Plasma Assisted Synthesis of Sn Based Nanocomposites As High Performance Li-Ion Anodes

阳极 材料科学 纳米复合材料 微观结构 锂(药物) 石墨 纳米技术 合金 纳米结构 电极 复合材料 医学 化学 物理化学 内分泌学
作者
Renzong Hu,Wei Sun,Hui Liu,Min Zhu
出处
期刊:Meeting abstracts 卷期号:MA2015-01 (2): 395-395
标识
DOI:10.1149/ma2015-01/2/395
摘要

Sn-based alloys /oxides /composite, which have been regarded as potential alternative anode materials, not only have a high theoretical capacity, but also have moderate operation potential to avert the safety concern of Li deposition and co-insertion of solvents to the active materials as is the case with graphite anodes. However, the capacity and cycle performance of the Sn-based anodes should be further improved to meet widely application in Li-ion batteries. For the Sn-based anode materials, further attention should not only be focussed on the exploration of new material system and the modification of currently available materials, but emphasis should also be placed on the microstructure design of the active materials of electrodes, in terms of tuning the volume stress/strain of electrodes and maintaining their integrity during cycling. We proposed that manipulating the multi-phase and multi-scale structures represents an important strategy for further improving the capacity and cycleability of Sn-based and other high-capacity alloy anodes, together with the development of new materials, new technology, and new mechanism. Mechanical milling has long been a versatile method for synthesis of nanostructured materials for lithium ion electrodes. However, difficult control of subtle nanostructure, too long time of milling and the related contamination of materials have been barriers for its application. By combining discharge plasma with mechanical milling, referred as Plasma-milling, a synergetic effect between mechanical impact and plasma is generated, which shows unusual significant effect in the synthesis of nanostructured materials. With this method, we have synthesized a series of nanostructured materials, such as WC-based hardmetals, hydrogen storage materials and especially anode materials for Li ion batteries. And very significantly, this method shows great advantage in massive synthesis (kg scale in lab) of a series of Li storage anodes, such as Si-C, Ge-C, Fe 2 O 3 -C. All these materials show excellent electrode performances due to the unique multiscale structure created by the P-milling. In this presentation, P-milling was used to prepare different kinds of Sn–C anode materials. By short-time Ar plasma-milling, a unique Sn–C nanocomposite is obtained with a microstructure of multi-scale Sn particles homogeneously dispersed in a graphite matrix (Figure1). Furthermore, an advanced Sn@SnOx/C nanocomposite was synthesized by using oxygen plasma-milling, in which Sn nanoparticles coated by an ultrathin amorphous/nanocrystalline SnO x layer are homogeneously embedded within a graphite matrix (Figure 2a, b). As lithium ion anodes, both the plasma Sn-C and Sn@SnOx/C nanocomposites displayed superior electrochemical performance (Figure 2c) to Sn-C composites prepared by conventional ball milling methods. Our results demonstrate that plasma assisted milling is a simple and efficient method to prepare Sn–C composite anodes on a large scale with good performance for lithium ion battery applications. References (1) Liu, H., Hu, R. Z.; Zhu, M. J. Mater Chem . 2012, 22,8022. (2) Liu, H., Hu, R. Z.; Zhu, M. J. Power Sources . 2013, 242,114. (3) Hu, R.Z.; Sun, W.; Zhu, M. J. Mater Chem.A . 2014, 2,9118. (4) Sun, W.; Hu, R. Z.; Zhu, M. J. Power Sources . 2014, I 268, 610. Acknowledgements : This work was supported by the National Science Foundation of China under projects No.51201065 and 51231003, by Doctorate Foundation of Ministry of Education under projects No. 20120172120007, by the Fundamental Research Funds for the Central Universities under project No.2014ZM0002. Figure 1 . Back-scattering electron SEM images of Sn-C composites. (a) Plasma milling-10h; (b) Conventional milling-10h; (c) HRTEM images of P-10h Sn-C composites, (d) Histograms of Sn particle size distributions of P-10h. Figure 2 (a) SEM , (b) TEM image of Sn@SnOx/C nanocomposite via plasma-milling 10h; (c) cycle performance of Sn-C and Sn@SnOx/C nanocomposite Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵坤煊完成签到 ,获得积分10
刚刚
刚刚
Ada完成签到 ,获得积分10
1秒前
暴躁的海ge完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
life的半边天完成签到 ,获得积分10
1秒前
4秒前
淳于忆曼完成签到 ,获得积分10
4秒前
Fashioner8351完成签到,获得积分10
5秒前
莫愁完成签到,获得积分10
5秒前
6秒前
甘地发布了新的文献求助10
6秒前
搜集达人应助LY采纳,获得10
7秒前
朱哥永正完成签到,获得积分10
8秒前
道道sy完成签到,获得积分10
11秒前
庄默羽完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
kevin_kong完成签到,获得积分10
12秒前
甘地完成签到,获得积分10
13秒前
xiaoliu完成签到,获得积分10
14秒前
小凤姑娘完成签到,获得积分10
15秒前
lmx完成签到,获得积分20
15秒前
我是老大应助傅家庆采纳,获得10
16秒前
耍酷的雪糕完成签到,获得积分10
16秒前
丛玉林完成签到,获得积分10
16秒前
杨天天完成签到 ,获得积分0
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
木之尹完成签到 ,获得积分10
17秒前
爱吃鱼的猫完成签到,获得积分10
21秒前
Maestro_S发布了新的文献求助10
22秒前
22秒前
脑洞疼应助小板凳采纳,获得10
22秒前
tg2024完成签到,获得积分10
24秒前
太兰完成签到 ,获得积分10
25秒前
en完成签到,获得积分10
26秒前
third完成签到,获得积分10
26秒前
可爱冰绿完成签到,获得积分10
26秒前
27秒前
树下的枫凉完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900