A Combined Model for Predicting CYP3A4 Clinical Net Drug-Drug Interaction Based on CYP3A4 Inhibition, Inactivation, and Induction Determined in Vitro

药物与药物的相互作用 药物相互作用 酮康唑 药品 CYP3A4型 化学 药理学 苯妥英钠 非竞争性抑制 计算生物学 细胞色素P450 生物 生物化学 新陈代谢 癫痫 抗真菌 神经科学 微生物学
作者
Odette A. Fahmi,Tristan S. Maurer,Mary Kish,Edwin Cardenas,Sherri Boldt,David O. Nettleton
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology & Experimental Therapeutics]
卷期号:36 (8): 1698-1708 被引量:196
标识
DOI:10.1124/dmd.107.018663
摘要

Although approaches to the prediction of drug-drug interactions (DDIs) arising via time-dependent inactivation have recently been developed, such approaches do not account for simple competitive inhibition or induction. Accordingly, these approaches do not provide accurate predictions of DDIs arising from simple competitive inhibition (e.g., ketoconazole) or induction of cytochromes P450 (e.g., phenytoin). In addition, methods that focus upon a single interaction mechanism are likely to yield misleading predictions in the face of mixed mechanisms (e.g., ritonavir). As such, we have developed a more comprehensive mathematical model that accounts for the simultaneous influences of competitive inhibition, time-dependent inactivation, and induction of CYP3A in both the liver and intestine to provide a net drug-drug interaction prediction in terms of area under the concentration-time curve ratio. This model provides a framework by which readily obtained in vitro values for competitive inhibition, time-dependent inactivation and induction for the precipitant compound as well as literature values for fm and FG for the object drug can be used to provide quantitative predictions of DDIs. Using this model, DDIs arising via inactivation (e.g., erythromycin) continue to be well predicted, whereas those arising via competitive inhibition (e.g., ketoconazole), induction (e.g., phenytoin), and mixed mechanisms (e.g., ritonavir) are also predicted within the ranges reported in the clinic. This comprehensive model quantitatively predicts clinical observations with reasonable accuracy and can be a valuable tool to evaluate candidate drugs and rationalize clinical DDIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知识四面八方来完成签到 ,获得积分10
刚刚
sn完成签到 ,获得积分10
1秒前
须臾完成签到,获得积分10
2秒前
hahahaha发布了新的文献求助10
3秒前
冷静的懿轩完成签到 ,获得积分10
3秒前
wangpeiyao完成签到 ,获得积分10
3秒前
夜未央完成签到,获得积分10
4秒前
5秒前
6秒前
星辰大海应助uracil97采纳,获得10
6秒前
8秒前
8秒前
Yogita完成签到,获得积分10
8秒前
黑囡完成签到,获得积分10
8秒前
隐形曼青应助墨痕采纳,获得10
8秒前
112发布了新的文献求助10
11秒前
11秒前
11秒前
安恋雨发布了新的文献求助10
12秒前
小树苗发布了新的文献求助10
12秒前
希望天下0贩的0应助coryyyy采纳,获得10
14秒前
14秒前
奋斗发布了新的文献求助10
14秒前
lito发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
柚橘完成签到,获得积分20
17秒前
芯止谭轩发布了新的文献求助10
19秒前
20秒前
20秒前
DDD发布了新的文献求助10
20秒前
小星星发布了新的文献求助10
21秒前
lalala发布了新的文献求助10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
orixero应助57r7uf采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546918
求助须知:如何正确求助?哪些是违规求助? 4632695
关于积分的说明 14628066
捐赠科研通 4574237
什么是DOI,文献DOI怎么找? 2508181
邀请新用户注册赠送积分活动 1484742
关于科研通互助平台的介绍 1455845