Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide – a unique 2D macromolecular surfactant

石墨烯 肺表面活性物质 形态学(生物学) 材料科学 氧化物 高分子 化学工程 纳米技术 化学 冶金 工程类 生物化学 生物 遗传学
作者
Xiaoyang Pan,Min‐Quan Yang,Yi‐Jun Xu
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:16 (12): 5589-5589 被引量:133
标识
DOI:10.1039/c3cp55038a
摘要

Zinc oxide (ZnO) nanostructured materials have received significant attention because of their unique physicochemical and electronic properties. In particular, the functional properties of ZnO are strongly dependent on its morphology and defect structure, particularly for a semiconductor ZnO-based photocatalyst. Here, we demonstrate a simple strategy for simultaneous morphology control, defect engineering and photoactivity tuning of semiconductor ZnO by utilizing the unique surfactant properties of graphene oxide (GO) in a liquid phase. By varying the amount of GO added during the synthesis process, the morphology of ZnO gradually evolves from a one dimensional prismatic rod to a hexagonal tube-like architecture while GO is converted into reduced GO (RGO). In addition, the introduction of GO can create oxygen vacancies in the lattice of ZnO crystals. As a result, the absorption edge of the wide band gap semiconductor ZnO is effectively extended to the visible light region, which thus endows the RGO-ZnO nanocomposites with visible light photoactivity; in contrast, the bare ZnO nanorod is only UV light photoactive. The synergistic integration of the unique morphology and the presence of oxygen vacancies imparts the RGO-ZnO nanocomposite with remarkably enhanced visible light photoactivity as compared to bare ZnO and its counterpart featuring different structural morphologies and the absence of oxygen vacancies. Our promising results highlight the versatility of the 2D GO as a solution-processable macromolecular surfactant to fabricate RGO-semiconductor nanocomposites with tunable morphology, defect structure and photocatalytic performance in a system-materials-engineering way.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mayaxi完成签到,获得积分10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
李健应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
李健应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得30
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
杨老师完成签到 ,获得积分10
4秒前
桐桐应助科研通管家采纳,获得30
4秒前
4秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
桐桐应助科研通管家采纳,获得30
4秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
星辰大海应助难过的曼香采纳,获得10
7秒前
newmoon完成签到 ,获得积分10
8秒前
10秒前
在水一方应助虎皮青椒采纳,获得10
10秒前
如果多年后完成签到 ,获得积分10
10秒前
素简发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5843748
求助须知:如何正确求助?哪些是违规求助? 6183992
关于积分的说明 15612471
捐赠科研通 4960611
什么是DOI,文献DOI怎么找? 2674413
邀请新用户注册赠送积分活动 1619312
关于科研通互助平台的介绍 1574491