Identifying void defects behind Tunnel composite lining based on transient electromagnetic radar method

探地雷达 雷达 叠加原理 空隙(复合材料) 导线 瞬态(计算机编程) 声学 无损检测 复合数 工程类 材料科学 计算机科学 复合材料 电信 物理 量子力学 操作系统
作者
Qingqiao Geng,Ying Ye,Xiaoliang Wang
出处
期刊:NDT & E international [Elsevier BV]
卷期号:125: 102562-102562 被引量:11
标识
DOI:10.1016/j.ndteint.2021.102562
摘要

Void defects behind the linings are typical in most operating tunnels, and effective methods are needed to identify them. This study presents a self-developed non-destructive detection method called transient electromagnetic radar (TER). Measures and algorithms were proposed to improve TER according to the characteristics of the composite lining. The detection depth was increased by adjusting the transmitter current and reducing the primary magnetic field turn-off time. The image resolution was improved using the transient electromagnetic signal enhancement algorithm. Data noise was suppressed using the hybrid algorithm of bipolar superposition and multi-period sampling. The improved TER was subjected to indoor physical model tests and try-outs in a defective railway tunnel to evaluate its actual detection capacity. The results showed that the improved TER had excellent distinguishing capacities on lining-related media and boundaries between different lining layers. It was capable of effectively detecting void defects over 10 cm in size behind the linings. Compared with ground-penetrating radar (GPR), TER is less interfered with by steel bars, and the radar image is more intuitive and clearer. The actual features of the void defects were more accurately reflected with the TER approach, indicating its great superiority in the recognition capacity. This study could help the evaluation of void defects and the subsequent maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
欢呼的井完成签到 ,获得积分10
2秒前
3秒前
周浩宇完成签到,获得积分10
4秒前
aniywn发布了新的文献求助10
5秒前
7秒前
生生发布了新的文献求助10
8秒前
漫漫完成签到 ,获得积分10
8秒前
9秒前
江凡儿完成签到,获得积分10
10秒前
ultraman80完成签到 ,获得积分10
11秒前
lizhiqian2024发布了新的文献求助10
11秒前
13秒前
生生完成签到,获得积分10
15秒前
16秒前
氢氧化钠Li完成签到,获得积分10
17秒前
cyy完成签到,获得积分10
18秒前
77完成签到,获得积分10
18秒前
aniywn完成签到,获得积分10
18秒前
21秒前
故意的寒安完成签到,获得积分10
21秒前
歇儿哒哒完成签到,获得积分10
22秒前
糟糕的雁菱完成签到 ,获得积分10
22秒前
23秒前
25秒前
26秒前
自己发布了新的文献求助10
26秒前
27秒前
30秒前
rye完成签到,获得积分10
30秒前
31秒前
赘婿应助王水水α采纳,获得10
31秒前
masheng发布了新的文献求助10
32秒前
35秒前
爆米花应助科研通管家采纳,获得10
36秒前
36秒前
xzy998应助科研通管家采纳,获得10
36秒前
36秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781828
求助须知:如何正确求助?哪些是违规求助? 3327417
关于积分的说明 10231012
捐赠科研通 3042288
什么是DOI,文献DOI怎么找? 1669966
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804