MCCR: Learning Multi-order Convolutional Correlations for Recommendation

计算机科学 卷积神经网络 推荐系统 图形 特征(语言学) 人工智能 图层(电子) 机器学习 特征学习 相似性(几何) 数据挖掘 理论计算机科学
作者
Yingshuai Kou,Neng Gao,Jia Peng,Jiong Wang,Min Li,Shan Yiwei
出处
期刊:Ubiquitous Intelligence and Computing
标识
DOI:10.1109/swc50871.2021.00015
摘要

Graph Neural Networks (GNNs) has been widely used to address the sparsity and cold start problems in recommendation system. By propagating embeddings from multi-hop neighbor nodes among the interaction graph and update target user and item embeddings, GNNs-based methods can achieve better recommendation performance. But those methods directly concatenate the output of each layer and ignore the different influences between different layers, and they simply use the inner product of the user and item’s embeddings to calculate the similarity and make recommendation based on it, which is insufficient to reveal the complex and nonlinear interactions.In this work, we propose to learn multi-order interactions between users and items and capture correlations between different-order information. We design a new recommendation framework MCCR, which treats each layer’s output as differentorder feature, and propose a multi-order interaction module to represent feature interactions. We adopt a multi-layer 3D CNN module to learn high-order interaction signals between users and items in an explicit approach. Through extensive experiments on three real-world datasets, which shows that MCCR evidently outperforms the state-of-the-art methods consistently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzf发布了新的文献求助10
刚刚
xuan2022发布了新的文献求助10
1秒前
neonsun完成签到,获得积分0
2秒前
李君然发布了新的文献求助10
4秒前
康阿蛋发布了新的文献求助10
4秒前
赘婿应助yjy采纳,获得10
6秒前
小药丸完成签到,获得积分10
6秒前
Amir完成签到,获得积分10
7秒前
整齐南莲完成签到,获得积分10
7秒前
852应助康阿蛋采纳,获得10
8秒前
zzf关闭了zzf文献求助
9秒前
深情安青应助916采纳,获得10
9秒前
李李完成签到,获得积分10
13秒前
13秒前
科研通AI5应助Wu采纳,获得10
14秒前
16秒前
16秒前
科研通AI5应助盛夏如花采纳,获得10
17秒前
yiyi发布了新的文献求助10
18秒前
YanK完成签到,获得积分10
18秒前
希格玻色子完成签到,获得积分10
18秒前
红绿灯的黄完成签到,获得积分10
18秒前
dilli完成签到 ,获得积分10
18秒前
19秒前
平常的毛豆应助神华采纳,获得10
20秒前
fssq发布了新的文献求助30
20秒前
沐雨橙风发布了新的文献求助10
20秒前
李爱国应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
传奇3应助何YI采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
21秒前
luckzzz发布了新的文献求助10
21秒前
21秒前
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800680
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328247
捐赠科研通 3062514
什么是DOI,文献DOI怎么找? 1681009
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627