Mapping large-scale and fine-grained urban functional zones from VHR images using a multi-scale semantic segmentation network and object based approach

计算机科学 比例(比率) 遥感 分割 对象(语法) 语义映射 领域(数学) 北京 人工智能 数据挖掘 计算机视觉 地图学 地理 数学 考古 纯数学 中国
作者
Shouhang Du,Shihong Du,Bo Liu,Xiuyuan Zhang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:261: 112480-112480 被引量:91
标识
DOI:10.1016/j.rse.2021.112480
摘要

Urban functional zones (UFZs) are essential for characterizing both urban spatial configurations and socio-economic properties and monitoring urbanization process, thus UFZs are fundamental to urban planning, management and renewal. Although many efforts in remote sensing field have been made to map UFZs, large-scale and fine-grained UFZ maps required by a broad range of urban applications are still unavailable. Existing methods generally rely on pre-determined mapping units, such as image tiles and road blocks, which significantly limit the mapping quality and the automation degree of mapping UFZs. Given that UFZs are composed of diverse geographic objects, this study proposes a novel object-based UFZ mapping method using very-high-resolution (VHR) remote sensing images. First, a multi-scale semantic segmentation network that achieves pixel-wised predictions is proposed to predict urban-functions for geographic objects by capturing multi-scale contextual information. Afterwards, a conditional random field (CRF) framework is designed to regroup objects into UFZs to produce the final UFZ map, wherein road vectors are incorporated to restrict the procedure. The presented object-as-analysis-unit scheme conquers the drawbacks of mapping-unit pre-determination and the semantic segmentation model provides accurate function information for objects, thus they can be applied for producing large-scale and fine-grained UFZ maps. In the experiment, the proposed method is evaluated by producing UFZ maps for Beijing and Shanghai, China, and competitive results with overall accuracy of 91.6% and 89.1% are achieved, respectively. Finally, the generated UFZ maps are utilized to analyze the urban-function structures of the two cities. The proposed method can be regarded as a significant development that appears to be promising and practical for mapping UFZ maps for real-world urban applications. • The work proposes an object-based scheme for mapping urban functional zones. • A multi-scale semantic segmentation network is presented to classify urban-function categories. • Urban functional zone maps for Beijing and Shanghai are produced and used to analyze their spatial structures. • This method is promising for real-world urban functional zone mapping tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ReAiLeer发布了新的文献求助10
1秒前
whitebird完成签到,获得积分10
2秒前
美丽凡阳完成签到,获得积分10
2秒前
Lucas应助温眼张采纳,获得10
3秒前
3秒前
王旭东完成签到 ,获得积分10
3秒前
3秒前
奇奇云完成签到,获得积分20
4秒前
4秒前
完美世界应助LSS采纳,获得10
4秒前
drbrianlau完成签到,获得积分10
4秒前
李小鑫吖完成签到,获得积分10
4秒前
JamesPei应助踏实晓啸采纳,获得10
5秒前
Wuwuwu完成签到 ,获得积分10
5秒前
6秒前
Ring完成签到 ,获得积分10
6秒前
shuangshuang完成签到,获得积分10
6秒前
8秒前
科研通AI5应助菜系采纳,获得10
8秒前
科研通AI5应助菜系采纳,获得10
8秒前
科研通AI5应助菜系采纳,获得10
8秒前
科研通AI5应助菜系采纳,获得10
8秒前
科研通AI5应助菜系采纳,获得10
8秒前
科研通AI5应助菜系采纳,获得10
8秒前
科研通AI5应助菜系采纳,获得10
8秒前
bb完成签到,获得积分10
9秒前
健壮惋清完成签到 ,获得积分10
9秒前
flj7038完成签到,获得积分10
9秒前
满意机器猫完成签到 ,获得积分10
9秒前
善学以致用应助给桃子采纳,获得10
10秒前
10秒前
xu完成签到,获得积分10
10秒前
五月拾旧完成签到,获得积分10
10秒前
阿V完成签到,获得积分10
11秒前
NBS完成签到 ,获得积分10
11秒前
lxl1996完成签到,获得积分10
11秒前
Running发布了新的文献求助10
11秒前
11秒前
11秒前
稳重的无色完成签到,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788524
求助须知:如何正确求助?哪些是违规求助? 3333791
关于积分的说明 10264005
捐赠科研通 3049788
什么是DOI,文献DOI怎么找? 1673680
邀请新用户注册赠送积分活动 802157
科研通“疑难数据库(出版商)”最低求助积分说明 760526