Developing QSAR Models with Defined Applicability Domains on PPARγ Binding Affinity Using Large Data Sets and Machine Learning Algorithms

数量结构-活动关系 机器学习 成对比较 人工智能 厕所 分子描述符 计算机科学 结合亲和力 训练集 数据挖掘 化学 生物化学 受体
作者
Zhongyu Wang,Jingwen Chen,Huixiao Hong
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:55 (10): 6857-6866 被引量:95
标识
DOI:10.1021/acs.est.0c07040
摘要

Chemicals may cause adverse effects on human health through binding to peroxisome proliferator-activated receptor γ (PPARγ). Hence, binding affinity is useful for evaluating chemicals with potential endocrine-disrupting effects. Quantitative structure–activity relationship (QSAR) regression models with defined applicability domains (ADs) are important to enable efficient screening of chemicals with PPARγ binding activity. However, lack of large data sets hindered the development of QSAR models. In this study, based on PPARγ binding affinity data sets curated from various sources, 30 QSAR models were developed using molecular fingerprints, two-dimensional descriptors, and five machine learning algorithms. Structure–activity landscapes (SALs) of the training compounds were described by network-like similarity graphs (NSGs). Based on the NSGs, local discontinuity scores were calculated and found to be positively correlated with the cross-validation absolute prediction errors of the models using the different training sets, descriptors, and algorithms. Moreover, innovative ADs were defined based on pairwise similarities between compounds and were found to outperform some conventional ADs. The curated data sets and developed regression models could be useful for evaluating PPARγ-involved adverse effects of chemicals. The SAL analysis and the innovative ADs could facilitate understanding of prediction results from QSAR models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助雨淋沐风采纳,获得10
刚刚
wanglong0118发布了新的文献求助10
刚刚
LC发布了新的文献求助10
1秒前
无花果应助松子采纳,获得10
1秒前
sakiecon完成签到,获得积分10
1秒前
言亦云发布了新的文献求助10
1秒前
ceploup完成签到,获得积分10
1秒前
1秒前
小新完成签到,获得积分20
2秒前
小杨发布了新的文献求助10
2秒前
2秒前
李健应助高挑的小蝴蝶采纳,获得10
3秒前
SHIMMER发布了新的文献求助10
3秒前
执着谷兰发布了新的文献求助10
4秒前
福禄小哥发布了新的文献求助10
4秒前
4秒前
Pluto0o发布了新的文献求助10
4秒前
ddssa1988完成签到,获得积分10
5秒前
没药完成签到 ,获得积分10
5秒前
SYLH应助友好的白柏采纳,获得10
5秒前
无聊的人完成签到 ,获得积分10
6秒前
Gauss应助酵母君采纳,获得30
6秒前
SYLH应助只因采纳,获得30
6秒前
eye完成签到,获得积分10
6秒前
lxx完成签到 ,获得积分10
6秒前
VIVA发布了新的文献求助10
7秒前
所所应助恣意采纳,获得10
7秒前
8秒前
龚广山完成签到,获得积分10
8秒前
8秒前
zkyyinf_zero发布了新的文献求助10
8秒前
Clearly完成签到 ,获得积分10
8秒前
9秒前
兔兔sci完成签到,获得积分10
9秒前
彭于晏应助冯昊采纳,获得10
9秒前
橘涂初九完成签到 ,获得积分10
10秒前
阿米尔完成签到,获得积分10
10秒前
言亦云完成签到,获得积分10
11秒前
ning完成签到,获得积分10
11秒前
wanci应助轻松的鑫采纳,获得10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977341
求助须知:如何正确求助?哪些是违规求助? 3521546
关于积分的说明 11208902
捐赠科研通 3258622
什么是DOI,文献DOI怎么找? 1799300
邀请新用户注册赠送积分活动 878198
科研通“疑难数据库(出版商)”最低求助积分说明 806810