亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-omics integration in the age of million single-cell data

数据集成 背景(考古学) 组学 可视化 模式 过程(计算) 推论 计算生物学 数据挖掘 数据类型 计算机科学 生物学数据 数据科学 系统生物学 生物信息学 人工智能 生物 程序设计语言 古生物学 社会学 操作系统 社会科学
作者
Zhen Miao,Benjamin D. Humphreys,Andrew P. McMahon,Junhyong Kim
出处
期刊:Nature Reviews Nephrology [Nature Portfolio]
卷期号:17 (11): 710-724 被引量:180
标识
DOI:10.1038/s41581-021-00463-x
摘要

An explosion in single-cell technologies has revealed a previously underappreciated heterogeneity of cell types and novel cell-state associations with sex, disease, development and other processes. Starting with transcriptome analyses, single-cell techniques have extended to multi-omics approaches and now enable the simultaneous measurement of data modalities and spatial cellular context. Data are now available for millions of cells, for whole-genome measurements and for multiple modalities. Although analyses of such multimodal datasets have the potential to provide new insights into biological processes that cannot be inferred with a single mode of assay, the integration of very large, complex, multimodal data into biological models and mechanisms represents a considerable challenge. An understanding of the principles of data integration and visualization methods is required to determine what methods are best applied to a particular single-cell dataset. Each class of method has advantages and pitfalls in terms of its ability to achieve various biological goals, including cell-type classification, regulatory network modelling and biological process inference. In choosing a data integration strategy, consideration must be given to whether the multi-omics data are matched (that is, measured on the same cell) or unmatched (that is, measured on different cells) and, more importantly, the overall modelling and visualization goals of the integrated analysis. Analyses of single-cell, multi-omics datasets have potential to provide new insights into biological processes; however, the integration of these complex datasets represents a considerable challenge. This Review describes the principles underlying the integration of multimodal data measured on the same cell (that is, matched data) and on different cells (unmatched data), outlining developments in computational methods and data visualization approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助可爱丹彤采纳,获得10
2秒前
柚又完成签到 ,获得积分10
19秒前
韩雨桐完成签到 ,获得积分10
25秒前
26秒前
27秒前
Gabriel发布了新的文献求助10
31秒前
852应助可爱丹彤采纳,获得10
33秒前
33秒前
38秒前
深情安青应助可爱丹彤采纳,获得10
48秒前
49秒前
领导范儿应助Gabriel采纳,获得10
52秒前
xiaoxiao发布了新的文献求助10
55秒前
华仔应助可爱丹彤采纳,获得10
1分钟前
沐沐完成签到,获得积分20
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Tales完成签到 ,获得积分10
1分钟前
沉静的碧琴完成签到 ,获得积分10
1分钟前
caca完成签到,获得积分0
1分钟前
2分钟前
2分钟前
2分钟前
QQ发布了新的文献求助10
2分钟前
暗号完成签到 ,获得积分0
2分钟前
w123发布了新的文献求助10
2分钟前
天选小牛马完成签到 ,获得积分10
2分钟前
w123完成签到,获得积分10
2分钟前
zwb完成签到 ,获得积分10
2分钟前
SciGPT应助可爱丹彤采纳,获得10
2分钟前
Doctor.TANG完成签到 ,获得积分10
2分钟前
祁言完成签到 ,获得积分10
2分钟前
2分钟前
zqq完成签到,获得积分0
2分钟前
QQ完成签到,获得积分20
2分钟前
3分钟前
团子发布了新的文献求助10
3分钟前
CodeCraft应助可爱丹彤采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302244
求助须知:如何正确求助?哪些是违规求助? 4449478
关于积分的说明 13848401
捐赠科研通 4335641
什么是DOI,文献DOI怎么找? 2380481
邀请新用户注册赠送积分活动 1375461
关于科研通互助平台的介绍 1341639