Multi-omics integration in the age of million single-cell data

数据集成 背景(考古学) 组学 可视化 模式 过程(计算) 推论 计算生物学 数据挖掘 数据类型 计算机科学 生物学数据 数据科学 系统生物学 生物信息学 人工智能 生物 程序设计语言 古生物学 社会学 操作系统 社会科学
作者
Zhen Miao,Benjamin D. Humphreys,Andrew P. McMahon,Junhyong Kim
出处
期刊:Nature Reviews Nephrology [Springer Nature]
卷期号:17 (11): 710-724 被引量:232
标识
DOI:10.1038/s41581-021-00463-x
摘要

An explosion in single-cell technologies has revealed a previously underappreciated heterogeneity of cell types and novel cell-state associations with sex, disease, development and other processes. Starting with transcriptome analyses, single-cell techniques have extended to multi-omics approaches and now enable the simultaneous measurement of data modalities and spatial cellular context. Data are now available for millions of cells, for whole-genome measurements and for multiple modalities. Although analyses of such multimodal datasets have the potential to provide new insights into biological processes that cannot be inferred with a single mode of assay, the integration of very large, complex, multimodal data into biological models and mechanisms represents a considerable challenge. An understanding of the principles of data integration and visualization methods is required to determine what methods are best applied to a particular single-cell dataset. Each class of method has advantages and pitfalls in terms of its ability to achieve various biological goals, including cell-type classification, regulatory network modelling and biological process inference. In choosing a data integration strategy, consideration must be given to whether the multi-omics data are matched (that is, measured on the same cell) or unmatched (that is, measured on different cells) and, more importantly, the overall modelling and visualization goals of the integrated analysis. Analyses of single-cell, multi-omics datasets have potential to provide new insights into biological processes; however, the integration of these complex datasets represents a considerable challenge. This Review describes the principles underlying the integration of multimodal data measured on the same cell (that is, matched data) and on different cells (unmatched data), outlining developments in computational methods and data visualization approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
jinger发布了新的文献求助10
2秒前
2秒前
Ljx应助JUSTDOIT采纳,获得10
2秒前
Senmir完成签到,获得积分10
2秒前
脑洞疼应助JUSTDOIT采纳,获得10
2秒前
2秒前
3秒前
bkagyin应助哈机密南北撸多采纳,获得10
3秒前
deletelzr完成签到,获得积分10
3秒前
hugozzy发布了新的文献求助10
4秒前
李健的粉丝团团长应助yyy采纳,获得10
4秒前
坦率灵槐应助liutao采纳,获得10
4秒前
晰默发布了新的文献求助10
4秒前
pp完成签到,获得积分10
5秒前
梦中是片蓝色海完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
阿豪发布了新的文献求助10
6秒前
6秒前
if发布了新的文献求助10
7秒前
luo发布了新的文献求助10
7秒前
卢雨生发布了新的文献求助20
8秒前
8秒前
完美世界应助xttawy采纳,获得10
8秒前
8秒前
典雅的乐安关注了科研通微信公众号
8秒前
科研通AI6应助阿珂采纳,获得30
9秒前
linh发布了新的文献求助30
9秒前
10秒前
科研通AI6应助林新宇采纳,获得10
10秒前
趣味生煎发布了新的文献求助10
11秒前
12秒前
温柔嚣张发布了新的文献求助10
12秒前
李健的小迷弟应助if采纳,获得10
12秒前
无花果应助Jimmy Ko采纳,获得10
13秒前
13秒前
糟糕的语芹完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648879
求助须知:如何正确求助?哪些是违规求助? 4777004
关于积分的说明 15046015
捐赠科研通 4807773
什么是DOI,文献DOI怎么找? 2571091
邀请新用户注册赠送积分活动 1527735
关于科研通互助平台的介绍 1486650