清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DLOAM: Real-time and Robust LiDAR SLAM System Based on CNN in Dynamic Urban Environments

计算机科学 稳健性(进化) 里程计 激光雷达 人工智能 机器人 点云 计算机视觉 特征(语言学) 同时定位和映射 移动机器人 遥感 地理 生物化学 化学 语言学 哲学 基因
作者
Wenbo Liu,Wei Sun,Yi Liu
出处
期刊:IEEE open journal of intelligent transportation systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:11
标识
DOI:10.1109/ojits.2021.3109423
摘要

Dynamic object detection, state estimation, and map-building are crucial for autonomous robot systems and intelligent transportation applications in urban scenarios. Most current LiDAR Simultaneous Localization and Mapping (SLAM) systems operate on the assumption that the observed environment is static. However, the overall accuracy and robustness of a SLAM system can be compromised by dynamic objects in the environment. Aiming at the problem of inaccurate odometry estimation and wrong mapping caused by the existing LiDAR SLAM method which cannot detect the dynamic objects, we study the SLAM problem of robots and unmanned vehicles equipped with LiDAR traveling in the dynamic urban scenes. We propose a fast LiDAR-only model-free dynamic objects detection method, which uses the spatial and temporal information of point cloud through a convolutional neural network (CNN), and the detection accuracy is improved by 35 use spatial information. We further integrate it into a state-of-the-art LiDAR SLAM framework to improve the SLAM performance. Firstly, the range image constructed by LiDAR point cloud is used for ground extraction and non-ground point clustering. Then, the motion of objects in the scene is estimated by the difference between adjacent frames, and the segmented objects are further divided into dynamic objects and static objects by their motion features. After that, the stable feature points are extracted from the static objects. Finally, the pose transformation of adjacent frames is solved by matching feature point pairs. We evaluated the accuracy and robustness of our system on datasets with different challenging dynamic environments, and the results show our system has significant improvements in accuracy and robustness of odometry and mapping, while still maintain real-time performance, which is sufficient for autonomous robot systems and intelligent transportation applications in urban scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海阔天空完成签到 ,获得积分10
13秒前
李演员完成签到,获得积分10
14秒前
zzhui完成签到,获得积分10
23秒前
溆玉碎兰笑完成签到 ,获得积分10
59秒前
1分钟前
无奈的代珊完成签到 ,获得积分10
1分钟前
墨尘发布了新的文献求助30
1分钟前
科研小白完成签到 ,获得积分10
1分钟前
皮皮完成签到 ,获得积分10
1分钟前
pcr163应助墨尘采纳,获得200
1分钟前
pcr163应助墨尘采纳,获得200
1分钟前
Alex-Song完成签到 ,获得积分0
1分钟前
英姑应助533采纳,获得10
1分钟前
搜集达人应助细心的语蓉采纳,获得10
1分钟前
阳炎完成签到,获得积分10
1分钟前
1分钟前
可爱的函函应助Bin_Liu采纳,获得10
1分钟前
2分钟前
2分钟前
含糊的茹妖完成签到 ,获得积分0
2分钟前
颜陌完成签到,获得积分10
2分钟前
四月发布了新的文献求助10
2分钟前
2分钟前
TheLsr发布了新的文献求助10
2分钟前
yuiip完成签到 ,获得积分10
2分钟前
Perry发布了新的文献求助10
2分钟前
TheLsr完成签到,获得积分10
2分钟前
song完成签到 ,获得积分10
3分钟前
无辜的行云完成签到 ,获得积分0
3分钟前
asdwind完成签到,获得积分10
3分钟前
泥泞完成签到 ,获得积分10
3分钟前
3分钟前
zhangsan完成签到,获得积分10
4分钟前
4分钟前
Bin_Liu发布了新的文献求助10
4分钟前
传奇3应助科研通管家采纳,获得10
4分钟前
jyy应助科研通管家采纳,获得10
4分钟前
4分钟前
533发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808131
求助须知:如何正确求助?哪些是违规求助? 3352745
关于积分的说明 10360260
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810380
科研通“疑难数据库(出版商)”最低求助积分说明 766076