Noninvasively predict the micro-vascular invasion and histopathological grade of hepatocellular carcinoma with CT-derived radiomics

医学 列线图 无线电技术 支持向量机 Lasso(编程语言) 特征选择 肝细胞癌 人工智能 随机森林 逻辑回归 接收机工作特性 放射科 分级(工程) 回归 模式识别(心理学) 机器学习
作者
Xu Tong,Jing Li
出处
期刊:European Journal of Radiology Open [Elsevier]
卷期号:9: 100424-100424
标识
DOI:10.1016/j.ejro.2022.100424
摘要

Abstract

Objectives

This research aims to predict the micro-vascular invasion and histopathologic grade of hepatocellular carcinoma with the CT-derived radiomics.

Methods

The clinical and image data of 82 patients were accessed from the TCGA-LIHC collection in The Cancer Imaging Archive. Then the radiomics features were extracted from the CT images. For obtaining the appropriate feature subset, the redundant features were removed by means of intra-class agreement analysis, the Student t test, LASSO-regression and support vector machine (SVM) Recursive feature elimination (SVM-RFE). Then several machine-learning-based classifiers including SVM and random forest (RF) were established. To accurately evaluate the tumor grade and MVI with the integration of the Radiomics and clinical insights, the nomogram-based clinical models were constructed. The diagnostic performance was evaluated with ROC analysis.

Results

7 and 10 radiomics features were selected via LASSO regression and SVM-RFE for identifying the tumor grade with regard to 13 and 10 features selected via LASSO regression and SVM-RFE for evaluating the MVI. The combination of the classifier—RF and the selection strategy of SVM-RFE yielded the best performance for grading HCC (AUC: 0.898). Differently, the combination of the classifier—RF and the selection strategy of LASSO regression resulted in the best performance for identifying MVI (AUC: 0.876). Finally, two nomograms were constructed with radiomics score (Rscore) and clinical risk factors, which showed excellent predictive value for both tumor grade (AUC: 0.928) and MVI (AUC: 0.945).

Conclusion

CT-derived radiomics were valuable for noninvasively assessing the micro-vascular invasion and histopathologic grade of hepatocellular carcinoma.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝的夏彤完成签到,获得积分10
1秒前
Owen应助活泼的牛青采纳,获得10
2秒前
3秒前
无情孤菱发布了新的文献求助10
3秒前
gexzygg应助阿渡采纳,获得10
4秒前
1816013153发布了新的文献求助30
5秒前
6秒前
6秒前
天真的初蓝完成签到,获得积分10
6秒前
CodeCraft应助m李采纳,获得10
6秒前
所所应助七七采纳,获得10
7秒前
懒癌晚期发布了新的文献求助10
9秒前
10秒前
慕青应助科研新星采纳,获得10
10秒前
11秒前
11秒前
12秒前
虚拟的清炎完成签到 ,获得积分10
13秒前
Random完成签到,获得积分10
13秒前
13秒前
13秒前
疯狂的醉波完成签到 ,获得积分10
14秒前
yy完成签到,获得积分10
15秒前
所所应助忧郁的念露采纳,获得50
15秒前
16秒前
17秒前
执着的寄凡完成签到,获得积分10
17秒前
18秒前
JamesPei应助懒癌晚期采纳,获得10
18秒前
suyu完成签到 ,获得积分10
18秒前
深情的绮山完成签到,获得积分10
19秒前
研友_VZG7GZ应助冷傲寻桃采纳,获得10
19秒前
19秒前
xxxx发布了新的文献求助50
19秒前
雷博发布了新的文献求助10
20秒前
21秒前
荀之玉完成签到,获得积分10
21秒前
王金娥发布了新的文献求助10
22秒前
22秒前
m李发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5541659
求助须知:如何正确求助?哪些是违规求助? 4628040
关于积分的说明 14606383
捐赠科研通 4569130
什么是DOI,文献DOI怎么找? 2504987
邀请新用户注册赠送积分活动 1482471
关于科研通互助平台的介绍 1454005