亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and Validation of a Radiomics Nomogram for Predicting Clinically Significant Prostate Cancer in PI-RADS 3 Lesions

列线图 医学 接收机工作特性 无线电技术 逻辑回归 前列腺癌 Lasso(编程语言) 双雷达 有效扩散系数 放射科 核医学 肿瘤科 癌症 内科学 乳腺癌 磁共振成像 计算机科学 万维网 乳腺摄影术
作者
Tianping Li,Linna Sun,Qinghe Li,Xunrong Luo,Mingfang Luo,Haizhu Xie,Peiyuan Wang
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:11 被引量:25
标识
DOI:10.3389/fonc.2021.825429
摘要

To develop and validate a radiomics nomogram for the prediction of clinically significant prostate cancer (CsPCa) in Prostate Imaging-Reporting and Data System (PI-RADS) category 3 lesions.We retrospectively enrolled 306 patients within PI-RADS 3 lesion from January 2015 to July 2020 in institution 1; the enrolled patients were randomly divided into the training group (n = 199) and test group (n = 107). Radiomics features were extracted from T2-weighted imaging (T2WI), apparent diffusion coefficient (ADC) imaging, and dynamic contrast-enhanced (DCE) imaging. Synthetic minority oversampling technique (SMOTE) was used to address the class imbalance. The ANOVA and least absolute shrinkage and selection operator (LASSO) regression model were used for feature selection and radiomics signature building. Then, a radiomics score (Rad-score) was acquired. Combined with serum prostate-specific antigen density (PSAD) level, a multivariate logistic regression analysis was used to construct a radiomics nomogram. Receiver operating characteristic (ROC) curve analysis was used to evaluate radiomics signature and nomogram. The radiomics nomogram calibration and clinical usefulness were estimated through calibration curve and decision curve analysis (DCA). External validation was assessed, and the independent validation cohort contained 65 patients within PI-RADS 3 lesion from January 2020 to July 2021 in institution 2.A total of 75 (24.5%) and 16 (24.6%) patients had CsPCa in institution 1 and 2, respectively. The radiomics signature with SMOTE augmentation method had a higher area under the ROC curve (AUC) [0.840 (95% CI, 0.776-0.904)] than that without SMOTE method [0.730 (95% CI, 0.624-0.836), p = 0.08] in the test group and significantly increased in the external validation group [0.834 (95% CI, 0.709-0.959) vs. 0.718 (95% CI, 0.562-0.874), p = 0.017]. The radiomics nomogram showed good discrimination and calibration, with an AUC of 0.939 (95% CI, 0.913-0.965), 0.884 (95% CI, 0.831-0.937), and 0.907 (95% CI, 0.814-1) in the training, test, and external validation groups, respectively. The DCA demonstrated the clinical usefulness of radiomics nomogram.The radiomics nomogram that incorporates the MRI-based radiomics signature and PSAD can be conveniently used to individually predict CsPCa in patients within PI-RADS 3 lesion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Vicki完成签到,获得积分20
6秒前
7秒前
CipherSage应助精明的眼神采纳,获得10
11秒前
15秒前
熊一只发布了新的文献求助10
20秒前
25秒前
shimhjy应助机灵柚子采纳,获得20
28秒前
脑洞疼应助Vicki采纳,获得30
28秒前
LiuChuannan完成签到 ,获得积分10
28秒前
30秒前
osel完成签到,获得积分10
30秒前
李李发布了新的文献求助10
30秒前
丘比特应助熊一只采纳,获得10
30秒前
王春琰完成签到 ,获得积分10
32秒前
osel发布了新的文献求助10
35秒前
邵能琪发布了新的文献求助10
40秒前
123完成签到 ,获得积分10
41秒前
Ava应助Jian采纳,获得10
41秒前
聪慧曲奇完成签到 ,获得积分10
43秒前
Gudeguy完成签到 ,获得积分10
44秒前
dwfwq完成签到,获得积分10
44秒前
月亮完成签到 ,获得积分10
48秒前
asdfqaz完成签到 ,获得积分10
49秒前
菜鸡5号完成签到,获得积分10
57秒前
sky完成签到,获得积分10
1分钟前
Jess2147应助安琦采纳,获得10
1分钟前
时势造英雄完成签到 ,获得积分10
1分钟前
动听的琴完成签到,获得积分10
1分钟前
1分钟前
对照完成签到 ,获得积分10
1分钟前
芳华如梦完成签到 ,获得积分10
1分钟前
整齐千柳发布了新的文献求助10
1分钟前
bkagyin应助整齐千柳采纳,获得10
1分钟前
1分钟前
百叶发布了新的文献求助10
1分钟前
1分钟前
Fn完成签到 ,获得积分10
1分钟前
英俊的铭应助sky采纳,获得10
1分钟前
亚雄完成签到,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346386
关于积分的说明 10329180
捐赠科研通 3062834
什么是DOI,文献DOI怎么找? 1681207
邀请新用户注册赠送积分活动 807462
科研通“疑难数据库(出版商)”最低求助积分说明 763702