可列斯基分解
卡尔曼滤波器
算法
奇异值分解
稳健性(进化)
国家(计算机科学)
扩展卡尔曼滤波器
计算机科学
数学
理论(学习稳定性)
控制理论(社会学)
统计
人工智能
控制(管理)
化学
特征向量
物理
机器学习
基因
量子力学
生物化学
作者
Yaming Liu,Rongyun Zhang,Yufeng Du,Peicheng Shi,Zhen Wang,Xinghui Fang
标识
DOI:10.1109/cvci54083.2021.9661239
摘要
To improve the estimation accuracy of distributed electric vehicle state parameters, a generalized fifth-order cubature Kalman filter (GHCKF) is proposed. Based on the fifth-order cubature Kalman filter algorithm, the weights and cubature points of the algorithm are obtained by using the generalized cubature rule, then use singular value decomposition (SVD) instead of the traditional Cholesky decomposition, derive the generalized fifth-order cubature Kalman filter (GHCKF), and apply the algorithm to the estimation of the state parameters of electric vehicles. Finally, the simulation shows that the algorithm not only improves the estimation accuracy and algorithm system stability but also reduces the influence of system model nonlinearity on the algorithm, which has better effectiveness and robustness.
科研通智能强力驱动
Strongly Powered by AbleSci AI