已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRI Radiomics of Breast Cancer: Machine Learning-Based Prediction of Lymphovascular Invasion Status

淋巴血管侵犯 随机森林 乳腺癌 医学 乳房磁振造影 人工智能 无线电技术 分割 特征选择 重采样 计算机科学 放射科 乳腺摄影术 癌症 内科学 转移
作者
Yasemin Kayadibi,Burak Koçak,Neşe Uçar,Yeşim Namdar Akan,Emine Yıldırım,Sibel Bektaş
出处
期刊:Academic Radiology [Elsevier]
卷期号:29: S126-S134 被引量:25
标识
DOI:10.1016/j.acra.2021.10.026
摘要

In patients with breast cancer (BC), lymphovascular invasion (LVI) status is considered an important prognostic factor. We aimed to develop machine learning (ML)-based radiomics models for the prediction of LVI status in patients with BC, using preoperative MRI images.This retrospective study included patients with BC with known LVI status and preoperative MRI. The dataset was split into training and unseen testing sets by stratified sampling with a 2:1 ratio. 2D and 3D radiomic features were extracted from contrast-enhanced T1 weighted images (C+T1W) and apparent diffusion coefficient (ADC) maps. The reliability of the features was assessed with two radiologists' segmentation data. Dimension reduction was done with reliability analysis, multi-collinearity analysis, removal of low-variance features, and feature selection. ML models were created with base, tuned, and boosted random forest algorithms.A total of 128 lesions (LVI-positive, 76; LVI-negative, 52) were included. The best model performance was achieved with tunning and boosting model based on 3D ADC maps and selected four radiomic features. The area under the curve and accuracy were 0.726 and 63.5% in the training data, 0.732 and 76.7% in the test data, respectively. The overall sensitivity and positive predictive values were 68% and 69.6% in the training data, 84.6% and 78.6% in the test data, respectively.ML and radiomics based on 3D segmentation of ADC maps can be used to predict LVI status in BC, with satisfying performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
HONG完成签到 ,获得积分10
1秒前
J2025发布了新的文献求助10
1秒前
深情安青应助风清扬采纳,获得10
2秒前
咸鱼王完成签到,获得积分10
3秒前
3秒前
gezid完成签到 ,获得积分10
4秒前
打打应助大抵是能上岸的采纳,获得10
4秒前
Jenny完成签到 ,获得积分10
5秒前
6秒前
七木完成签到,获得积分10
6秒前
龙子黄发布了新的文献求助10
7秒前
7秒前
美好的访琴完成签到,获得积分20
7秒前
xvan发布了新的文献求助10
12秒前
ecnu搬砖人完成签到,获得积分10
13秒前
FashionBoy应助小米采纳,获得10
14秒前
14秒前
ecnu搬砖人发布了新的文献求助30
15秒前
15秒前
脑洞疼应助学医梅西采纳,获得10
15秒前
湘南之地完成签到,获得积分10
17秒前
123发布了新的文献求助10
17秒前
17秒前
紫愿完成签到 ,获得积分10
18秒前
Rollei给Rollei的求助进行了留言
19秒前
思源应助余婷采纳,获得10
19秒前
湘南之地发布了新的文献求助10
20秒前
小鱼完成签到 ,获得积分10
23秒前
刘刘完成签到 ,获得积分10
25秒前
25秒前
wik完成签到 ,获得积分10
27秒前
幸运鹅应助平淡道天采纳,获得10
27秒前
wu完成签到 ,获得积分10
27秒前
卡恩完成签到 ,获得积分0
28秒前
30秒前
Wendy发布了新的文献求助10
31秒前
风清扬发布了新的文献求助10
31秒前
32秒前
32秒前
豪宝好饱完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493402
求助须知:如何正确求助?哪些是违规求助? 4591431
关于积分的说明 14433835
捐赠科研通 4523958
什么是DOI,文献DOI怎么找? 2478514
邀请新用户注册赠送积分活动 1463494
关于科研通互助平台的介绍 1436350