Intelligent Small Sample Defect Detection of Water Walls in Power Plants Using Novel Deep Learning Integrating Deep Convolutional GAN

过度拟合 计算机科学 卷积神经网络 深度学习 人工智能 锅炉(水暖) 样品(材料) 发电 火力发电站 功率(物理) 人工神经网络 模式识别(心理学) 工程类 电气工程 化学 物理 色谱法 量子力学 废物管理
作者
Zhiqiang Geng,Chunjing Shi,Yongming Han
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 7489-7497 被引量:28
标识
DOI:10.1109/tii.2022.3159817
摘要

Thermal power generation is one of the main forms of electricity generation in the world, and the share of thermal power generation in total electricity generation has long been maintained at over 80% in 2018. However, power plants are often shut down due to boiler accidents, which are mostly caused by water wall damage. At present, the detection method for water wall defects is still in the stage of manual detection, which has a high risk coefficient, long time-frame, and low efficiency. In this article, a deep learning method integrating deep convolutional generating adversarial networks (DCGAN) and a seam carving algorithm to solve the problem of small sample defect detection is proposed. The proposed method uses the seam carving algorithm to solve the overfitting of the DCGAN, for which the DCGAN generates high-quality images. Then, the intelligent small sample defect detection model is built by convolutional neural networks. Finally, the proposed method is used in the defect detection of water walls in the actual thermal power generation plant. To evaluate the performance of our proposed method, we conduct comparison experiments among different GANs and different detection networks integrating different processes used and not used the proposed data expansion method. The experimental results demonstrate that the proposed method can achieve a detection accuracy of 98.43%, which is higher than other methods, and has the best generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助苹果小狗采纳,获得10
刚刚
tigger完成签到 ,获得积分10
1秒前
深情的不可完成签到,获得积分10
5秒前
艾克关注了科研通微信公众号
5秒前
tRNA完成签到 ,获得积分10
18秒前
共享精神应助深情的不可采纳,获得10
18秒前
马克完成签到,获得积分10
19秒前
20秒前
愤怒的之玉完成签到 ,获得积分10
26秒前
丘比特应助Ki采纳,获得10
27秒前
666666666666666完成签到 ,获得积分10
29秒前
十一完成签到,获得积分20
31秒前
科研小谢完成签到,获得积分10
33秒前
Jasper应助科研牛马采纳,获得10
36秒前
36秒前
38秒前
Leeon完成签到,获得积分10
38秒前
Ki发布了新的文献求助10
39秒前
39秒前
40秒前
41秒前
科研通AI2S应助刘松采纳,获得10
43秒前
alge发布了新的文献求助10
45秒前
shenlee发布了新的文献求助10
47秒前
小台发布了新的文献求助10
47秒前
赘婿应助阿巴阿巴采纳,获得10
48秒前
Ki完成签到,获得积分10
48秒前
重要的天玉完成签到,获得积分10
50秒前
青树柠檬完成签到 ,获得积分10
51秒前
Yaon-Xu完成签到,获得积分10
53秒前
56秒前
57秒前
bc应助海豚有海采纳,获得20
57秒前
思源应助老实寒云采纳,获得10
58秒前
jewie完成签到 ,获得积分10
59秒前
alge完成签到,获得积分10
1分钟前
Wendy完成签到,获得积分10
1分钟前
1分钟前
iNk应助科研通管家采纳,获得20
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776474
求助须知:如何正确求助?哪些是违规求助? 3321968
关于积分的说明 10208252
捐赠科研通 3037252
什么是DOI,文献DOI怎么找? 1666613
邀请新用户注册赠送积分活动 797594
科研通“疑难数据库(出版商)”最低求助积分说明 757872