3D Lightweight Network for Simultaneous Registration and Segmentation of Organs-at-Risk in CT Images of Head and Neck Cancer

轮廓 分割 计算机科学 图像配准 人工智能 影像引导放射治疗 计算机视觉 图像分割 背景(考古学) 医学影像学 图像(数学) 古生物学 计算机图形学(图像) 生物
作者
Bin Huang,Yufeng Ye,Ziyue Xu,Zongyou Cai,Yan He,Zhangnan Zhong,Lingxiang Liu,Xin Chen,Hanwei Chen,Bingsheng Huang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (4): 951-964 被引量:15
标识
DOI:10.1109/tmi.2021.3128408
摘要

Image-guided radiation therapy (IGRT) is the most effective treatment for head and neck cancer. The successful implementation of IGRT requires accurate delineation of organ-at-risk (OAR) in the computed tomography (CT) images. In routine clinical practice, OARs are manually segmented by oncologists, which is time-consuming, laborious, and subjective. To assist oncologists in OAR contouring, we proposed a three-dimensional (3D) lightweight framework for simultaneous OAR registration and segmentation. The registration network was designed to align a selected OAR template to a new image volume for OAR localization. A region of interest (ROI) selection layer then generated ROIs of OARs from the registration results, which were fed into a multiview segmentation network for accurate OAR segmentation. To improve the performance of registration and segmentation networks, a centre distance loss was designed for the registration network, an ROI classification branch was employed for the segmentation network, and further, context information was incorporated to iteratively promote both networks' performance. The segmentation results were further refined with shape information for final delineation. We evaluated registration and segmentation performances of the proposed framework using three datasets. On the internal dataset, the Dice similarity coefficient (DSC) of registration and segmentation was 69.7% and 79.6%, respectively. In addition, our framework was evaluated on two external datasets and gained satisfactory performance. These results showed that the 3D lightweight framework achieved fast, accurate and robust registration and segmentation of OARs in head and neck cancer. The proposed framework has the potential of assisting oncologists in OAR delineation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛豆爸爸应助科研通管家采纳,获得20
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
Jasper应助科研通管家采纳,获得30
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
精明凡双应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
wyz653发布了新的文献求助10
3秒前
Yossi发布了新的文献求助30
5秒前
6秒前
6秒前
Pretrial完成签到 ,获得积分10
7秒前
科研通AI5应助zjcbk985采纳,获得10
8秒前
8秒前
9秒前
hmv发布了新的文献求助10
10秒前
把月亮留在心里完成签到 ,获得积分20
10秒前
科研通AI5应助iambamboo采纳,获得20
11秒前
虚拟的秋寒完成签到,获得积分10
14秒前
一定发发发完成签到,获得积分10
15秒前
yhmi0809发布了新的文献求助10
15秒前
Lucas应助小马采纳,获得10
17秒前
真棒完成签到,获得积分10
18秒前
20秒前
精明玲完成签到 ,获得积分10
22秒前
27秒前
zjcbk985发布了新的文献求助10
27秒前
27秒前
Akim应助Ado采纳,获得10
28秒前
科研小白完成签到,获得积分10
29秒前
Orange应助lyh采纳,获得10
29秒前
苏浩然完成签到,获得积分10
32秒前
iambamboo发布了新的文献求助20
33秒前
CMCM发布了新的文献求助10
34秒前
feng发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4767684
求助须知:如何正确求助?哪些是违规求助? 4104663
关于积分的说明 12697409
捐赠科研通 3822480
什么是DOI,文献DOI怎么找? 2109679
邀请新用户注册赠送积分活动 1134192
关于科研通互助平台的介绍 1015112