3D Lightweight Network for Simultaneous Registration and Segmentation of Organs-at-Risk in CT Images of Head and Neck Cancer

轮廓 分割 计算机科学 图像配准 人工智能 影像引导放射治疗 计算机视觉 图像分割 背景(考古学) 医学影像学 图像(数学) 古生物学 计算机图形学(图像) 生物
作者
Bin Huang,Yufeng Ye,Ziyue Xu,Zongyou Cai,Yan He,Zhangnan Zhong,Lingxiang Liu,Xin Chen,Hanwei Chen,Bingsheng Huang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (4): 951-964 被引量:15
标识
DOI:10.1109/tmi.2021.3128408
摘要

Image-guided radiation therapy (IGRT) is the most effective treatment for head and neck cancer. The successful implementation of IGRT requires accurate delineation of organ-at-risk (OAR) in the computed tomography (CT) images. In routine clinical practice, OARs are manually segmented by oncologists, which is time-consuming, laborious, and subjective. To assist oncologists in OAR contouring, we proposed a three-dimensional (3D) lightweight framework for simultaneous OAR registration and segmentation. The registration network was designed to align a selected OAR template to a new image volume for OAR localization. A region of interest (ROI) selection layer then generated ROIs of OARs from the registration results, which were fed into a multiview segmentation network for accurate OAR segmentation. To improve the performance of registration and segmentation networks, a centre distance loss was designed for the registration network, an ROI classification branch was employed for the segmentation network, and further, context information was incorporated to iteratively promote both networks' performance. The segmentation results were further refined with shape information for final delineation. We evaluated registration and segmentation performances of the proposed framework using three datasets. On the internal dataset, the Dice similarity coefficient (DSC) of registration and segmentation was 69.7% and 79.6%, respectively. In addition, our framework was evaluated on two external datasets and gained satisfactory performance. These results showed that the 3D lightweight framework achieved fast, accurate and robust registration and segmentation of OARs in head and neck cancer. The proposed framework has the potential of assisting oncologists in OAR delineation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
终生科研徒刑完成签到 ,获得积分10
1秒前
稳重富完成签到,获得积分10
4秒前
柳七完成签到,获得积分10
4秒前
机灵柚子应助打哈哈儿采纳,获得30
6秒前
7秒前
11秒前
阔达猫咪发布了新的文献求助10
12秒前
再夕予发布了新的文献求助10
14秒前
3123939715发布了新的文献求助10
15秒前
Gstar完成签到,获得积分10
17秒前
缓慢的如波完成签到,获得积分10
19秒前
HebingTang完成签到,获得积分10
20秒前
虚幻的雪巧完成签到,获得积分10
20秒前
烟花应助威武绿真采纳,获得10
20秒前
嘚嘚发布了新的文献求助10
21秒前
内向的青荷完成签到,获得积分10
22秒前
22秒前
Gao_Z_X完成签到 ,获得积分10
23秒前
24秒前
25秒前
Tuniverse_发布了新的文献求助10
25秒前
香蕉觅云应助倔驴采纳,获得10
27秒前
29秒前
wys完成签到 ,获得积分10
29秒前
嘚嘚完成签到,获得积分10
30秒前
开心元霜发布了新的文献求助10
31秒前
32秒前
34秒前
溜了溜了完成签到,获得积分10
35秒前
dr.gu发布了新的文献求助10
35秒前
40秒前
YueLongZ发布了新的文献求助10
41秒前
登山观海完成签到,获得积分20
41秒前
ice完成签到 ,获得积分10
42秒前
再夕予完成签到,获得积分10
43秒前
43秒前
43秒前
kaifeiQi完成签到,获得积分10
44秒前
科研通AI5应助Tuniverse_采纳,获得10
44秒前
登山观海发布了新的文献求助10
44秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801417
求助须知:如何正确求助?哪些是违规求助? 3347057
关于积分的说明 10331788
捐赠科研通 3063333
什么是DOI,文献DOI怎么找? 1681602
邀请新用户注册赠送积分活动 807626
科研通“疑难数据库(出版商)”最低求助积分说明 763825