Real-Time Delivery Time Forecasting and Promising in Online Retailing: When Will Your Package Arrive?

计算机科学 交付性能 集合(抽象数据类型) 运筹学 提前期 相关性(法律) 决策树 钥匙(锁) 时间点 数据挖掘 营销 业务 过程管理 工程类 哲学 美学 程序设计语言 法学 计算机安全 政治学
作者
Nooshin Salari,Sheng Liu,Zuo‐Jun Max Shen
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (3): 1421-1436 被引量:41
标识
DOI:10.1287/msom.2022.1081
摘要

Problem definition: Providing fast and reliable delivery services is key to running a successful online retail business. To achieve a better delivery time guarantee policy, we study how to estimate and promise delivery time for new customer orders in real time. Academic/practical relevance: Delivery time promising is critical to managing customer expectations and improving customer satisfaction. Simply overpromising or underpromising is undesirable because of the negative impacts on short-/long-term sales. To the best of our knowledge, we are the first to develop a data-driven framework to predict the distribution of order delivery time and set promised delivery time to customers in a cost-effective way. Methodology: We apply and extend tree-based models to generate distributional forecasts by exploiting the complicated relationship between delivery time and relevant operational predictors. To account for the cost-sensitive decision-making problem structure, we develop a new split rule for quantile regression forests that incorporates an asymmetric loss function in split point selection. We further propose a cost-sensitive decision rule to decide the promised delivery day from the predicted distribution. Results: Our decision rule is proven to be optimal given certain cost structures. Tested on a real-world data set shared from JD.com, our proposed machine learning–based models deliver superior forecasting performance. In addition, we demonstrate that our framework has the potential to provide better promised delivery time in terms of sales, cost, and accuracy as compared with the conventional promised time set by JD.com. Specifically, our simulation results indicate that the proposed delivery time promise policy can improve the sales volume by 6.1% over the current policy. Managerial implications: Through a more accurate estimation of the delivery time distribution, online retailers can strategically set the promised time to maximize customer satisfaction and boost sales. Our data-driven framework reveals the importance of modeling fulfillment operations in delivery time forecasting and integrating the decision-making problem structure with the forecasting model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助科研通管家采纳,获得20
10秒前
xu完成签到 ,获得积分10
11秒前
lilylwy完成签到 ,获得积分0
14秒前
雪流星完成签到 ,获得积分10
19秒前
空的境界完成签到 ,获得积分10
22秒前
小新完成签到 ,获得积分10
25秒前
枫威完成签到 ,获得积分10
28秒前
沉静香氛完成签到 ,获得积分10
43秒前
AJ完成签到 ,获得积分10
43秒前
ZJZALLEN完成签到 ,获得积分10
56秒前
57秒前
ycd完成签到,获得积分10
1分钟前
务实鞅完成签到 ,获得积分10
1分钟前
1分钟前
钟声完成签到,获得积分0
1分钟前
lopper发布了新的文献求助30
1分钟前
动听的千萍完成签到 ,获得积分10
1分钟前
zgt01完成签到 ,获得积分10
1分钟前
发财小鱼完成签到 ,获得积分10
1分钟前
开朗白开水完成签到 ,获得积分10
1分钟前
lopper完成签到,获得积分20
1分钟前
yy完成签到 ,获得积分10
1分钟前
1分钟前
Miyano0818发布了新的文献求助30
1分钟前
clare完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
chenbin完成签到,获得积分10
2分钟前
2分钟前
Titi完成签到 ,获得积分10
2分钟前
1002SHIB完成签到,获得积分10
2分钟前
nihaolaojiu完成签到,获得积分10
2分钟前
贰鸟应助科研通管家采纳,获得20
2分钟前
cdercder应助科研通管家采纳,获得20
2分钟前
cdercder应助科研通管家采纳,获得20
2分钟前
sheetung完成签到,获得积分10
2分钟前
美好灵寒完成签到 ,获得积分10
2分钟前
guangshuang完成签到 ,获得积分10
2分钟前
自然的含蕾完成签到 ,获得积分10
2分钟前
YOLO完成签到 ,获得积分10
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318422
捐赠科研通 3060628
什么是DOI,文献DOI怎么找? 1679712
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353