Design, synthesis and biological evaluation of novel dual-targeting fluorescent probes for detection of Fe3+ in the lysosomes of hepatocytes mediated by galactose-morpholine moieties

化学 吗啉 溶酶体 半乳糖 部分 肝细胞 选择性 荧光 生物化学 组合化学 立体化学 体外 药物化学 催化作用 物理 量子力学
作者
Yan Wang,Feiyang Liu,Qingyuan Yi,Mian Wang,Jianyi Wang
出处
期刊:Talanta [Elsevier BV]
卷期号:243: 123362-123362 被引量:1
标识
DOI:10.1016/j.talanta.2022.123362
摘要

In this work, novel dual-targeting probes composed of galactose and morpholine were designed and synthesized for monitoring Fe3+ levels in the lysosome of hepatocyte. MP-Gal-1, MP-Gal-2 and MP-Gal-3 showed good selectivity and sensitivities toward Fe3+ with the detection limits of 9.40 × 10-8 M, 7.68 × 10-8 M and 7.10 × 10-8 M, respectively. 1:2 stoichiometry is the most likely recognition mode between probe and Fe3+. Low toxic MP-Gal-1, MP-Gal-2 and MP-Gal-3 exhibited favorable hepatic targeting effect in both cell and tissue levels, which was because the galactose group of probe could be recognized by ASGPR overexpressed on the hepatocytes. The hepatocyte-targeting capacity followed MP-Gal-1 < MP-Gal-2 < MP-Gal-3 trend, which was attributed to the galactose cluster effect. MP-Gal-1, MP-Gal-2 and MP-Gal-3 also displayed good lysosomes-targeting capacities, because the basic morpholine moiety of probes could be easily attracted by the acidic lysosome. Therefore, MP-Gal-1, MP-Gal-2 and MP-Gal-3 have good dual targeting capacities (liver and lysosome) and could be used to detect lysosomal Fe3+ in the liver, which is great significant for precise diagnosis and treatment of liver lysosomal iron-related diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代的滑板完成签到,获得积分20
1秒前
还好完成签到,获得积分10
1秒前
Leo000007发布了新的文献求助10
2秒前
RenYanqiang完成签到,获得积分10
2秒前
英俊的铭应助韩晚渔采纳,获得10
2秒前
万能图书馆应助xiaotianshi采纳,获得10
3秒前
zheng发布了新的文献求助10
3秒前
Hello应助洁净的醉波采纳,获得10
3秒前
4秒前
rpe发布了新的文献求助10
5秒前
拾石子完成签到 ,获得积分10
6秒前
艺骞完成签到 ,获得积分10
7秒前
8秒前
9秒前
9秒前
王嘉尔发布了新的文献求助20
9秒前
10秒前
强强科研发布了新的文献求助10
11秒前
12秒前
想睡觉的小笼包完成签到 ,获得积分10
14秒前
水心发布了新的文献求助20
14秒前
蔓蔓完成签到,获得积分10
15秒前
16秒前
jklhughjgiu发布了新的文献求助10
16秒前
听说外面下雨了完成签到,获得积分10
16秒前
zm发布了新的文献求助10
17秒前
17秒前
luo完成签到,获得积分10
17秒前
清晨的粥完成签到,获得积分10
18秒前
核桃应助Primary采纳,获得10
18秒前
20秒前
一路向南发布了新的文献求助50
20秒前
丘比特应助强强科研采纳,获得10
20秒前
ally完成签到,获得积分10
21秒前
xc发布了新的文献求助10
21秒前
完美世界应助王嘉尔采纳,获得10
21秒前
传奇3应助猪猪hero采纳,获得10
21秒前
22秒前
xiaotianshi发布了新的文献求助10
23秒前
一一应助科研通管家采纳,获得10
23秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836309
求助须知:如何正确求助?哪些是违规求助? 3378623
关于积分的说明 10505359
捐赠科研通 3098262
什么是DOI,文献DOI怎么找? 1706407
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772382