人工神经网络
冷却液
流量(数学)
炸薯条
遗传算法
体积流量
功率(物理)
质量流量
传热
计算机冷却
电子工程
热的
计算机科学
材料科学
机械
算法
机械工程
工程类
电气工程
人工智能
热力学
电子设备和系统的热管理
机器学习
物理
作者
Jian Zhang,Zhihui Xie,Zhuoqun Lu,Penglei Li,Kun Xi
出处
期刊:Micromachines
[MDPI AG]
日期:2022-06-09
卷期号:13 (6): 918-918
被引量:9
摘要
A numerical simulation model of embedded liquid microchannels for cooling 3D multi-core chips is established. For the thermal management problem when the operating power of a chip changes dynamically, an intelligent method combining BP neural network and genetic algorithm is used for distribution optimization of coolant flow under the condition with a fixed total mass flow rate. Firstly, a sample point dataset containing temperature field information is obtained by numerical calculation of convective heat transfer, and the constructed BP neural network is trained using these data. The “working condition–flow distribution–temperature” mapping relationship is predicted by the BP neural network. The genetic algorithm is further used to optimize the optimal flow distribution strategy to adapt to the dynamic change of power. Compared with the commonly used uniform flow distribution method, the intelligently optimized nonuniform flow distribution method can further reduce the temperature of the chip and improve the temperature uniformity of the chip.
科研通智能强力驱动
Strongly Powered by AbleSci AI