Malaria parasite classification framework using a novel channel squeezed and boosted CNN

卷积神经网络 疟疾 人工智能 模式识别(心理学) 计算机科学 深度学习 学习迁移 合并(版本控制) 寄生虫寄主 恶性疟原虫 特征向量 生物 免疫学 情报检索 万维网
作者
Saddam Hussain Khan,Najmus Saher Shah,Rabia Nuzhat,Abdul Majid,Hani Alquhayz,Asifullah Khan
出处
期刊:Microscopy [Oxford University Press]
卷期号:71 (5): 271-282 被引量:22
标识
DOI:10.1093/jmicro/dfac027
摘要

Malaria is a life-threatening infection that infects the red blood cells and gradually grows throughout the body. The plasmodium parasite is transmitted by a female Anopheles mosquito bite and severely affects numerous individuals within the world every year. Therefore, early detection tests are required to identify parasite-infected cells. The proposed technique exploits the learning capability of deep convolutional neural network (CNN) to distinguish the parasite-infected patients from healthy individuals using thin blood smear. In this regard, the detection is accomplished using a novel STM-SB-RENet block-based CNN that employs the idea of split-transform-merge (STM) and channel squeezing-boosting (SB) in a modified fashion. In this connection, a new convolutional block-based STM is developed, which systematically implements region and edge operations to explore the parasitic infection pattern of malaria related to region homogeneity, structural obstruction and boundary-defining features. Moreover, the diverse boosted feature maps are achieved by incorporating the new channel SB and transfer learning (TL) idea in each STM block at abstract, intermediate and target levels to capture minor contrast and texture variation between parasite-infected and normal artifacts. The malaria input images for the proposed models are initially transformed using discrete wavelet transform to generate enhanced and reduced feature space. The proposed architectures are validated using hold-out cross-validation on the National Institute of Health Malaria dataset. The proposed methods outperform training from scratch and TL-based fine-tuned existing techniques. The considerable performance (accuracy: 97.98%, sensitivity: 0.988, F-score: 0.980 and area under the curve: 0.996) of STM-SB-RENet suggests that it can be utilized to screen malaria-parasite-infected patients. Graphical Abstract.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小黑鲨完成签到 ,获得积分10
3秒前
Li应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
昏睡的蟠桃应助科研通管家采纳,获得100
4秒前
烟花应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得30
4秒前
林师刚完成签到,获得积分10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
5秒前
INSAT完成签到,获得积分10
5秒前
SciGPT应助怕黑的擎采纳,获得10
6秒前
6秒前
6秒前
wcy完成签到 ,获得积分10
7秒前
7秒前
科研通AI2S应助是小明啦采纳,获得10
9秒前
9秒前
舒心平蝶完成签到 ,获得积分10
10秒前
Lili发布了新的文献求助10
10秒前
aaaa完成签到,获得积分10
11秒前
pluto应助HUangg采纳,获得10
11秒前
开朗若雁发布了新的文献求助10
11秒前
王先生完成签到,获得积分10
12秒前
12秒前
CodeCraft应助温良采纳,获得10
13秒前
摸俞发布了新的文献求助10
14秒前
香蕉觅云应助夜曲采纳,获得10
14秒前
17秒前
夏目发布了新的文献求助10
17秒前
叽里呱啦完成签到,获得积分20
20秒前
月亮完成签到,获得积分10
20秒前
cff完成签到 ,获得积分10
21秒前
22秒前
余味应助自然尔琴采纳,获得10
25秒前
25秒前
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332081
捐赠科研通 3063446
什么是DOI,文献DOI怎么找? 1681691
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763843