光热治疗
二茂铁
体内
阿霉素
盐酸阿霉素
化学
纳米颗粒
谷胱甘肽
激进的
体外
组合化学
生物物理学
光热效应
核化学
纳米技术
材料科学
生物化学
化疗
酶
生物技术
物理化学
外科
生物
医学
电化学
电极
作者
Jiahui Yang,Yang Liu,Qin Li,Liangke Zhang
标识
DOI:10.1016/j.jcis.2022.06.117
摘要
Ferrocene and its derivatives have great potential for biomedical applications, but few related studies have been reported. In this study, copper ions and ferrocene derivatives were used for the first time to construct the ferrocene-based nanoparticles (Cu-Fc) with a hydrated particle size of approximately 220 nm. Their good photothermal conversion properties were verified in vitro and in vivo for the first time, indicating that they could be used as a novel photothermal agent for tumor treatment. In addition, the nanoparticles exhibited efficient Fenton effect under weakly acidic conditions, indicating that they can generate hydroxyl radicals (OH) to kill tumors in the weakly acidic environment of the tumor-specific microenvironment. More importantly, the nanoparticles can deplete glutathione (GSH), thus further enhancing Fenton effect-mediated chemodynamic therapy (CDT). Multifunctional ferrocene-based nanoparticles ([email protected]) were obtained after loading the chemotherapeutic drug doxorubicin hydrochloride (DOX). The results of in vitro and in vivo experiments showed that [email protected] could enhance tumor treatment by the combination of chemo/CDT/photothermal therapy (PTT).
科研通智能强力驱动
Strongly Powered by AbleSci AI