清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning for understanding and predicting neurodevelopmental outcomes in premature infants: a systematic review

系统回顾 儿科研究 医学 梅德林 重症监护医学 儿科 生物 生物化学
作者
Stephanie Baker,Yogavijayan Kandasamy
出处
期刊:Pediatric Research [Springer Nature]
卷期号:93 (2): 293-299 被引量:10
标识
DOI:10.1038/s41390-022-02120-w
摘要

Abstract Background Machine learning has been attracting increasing attention for use in healthcare applications, including neonatal medicine. One application for this tool is in understanding and predicting neurodevelopmental outcomes in preterm infants. In this study, we have carried out a systematic review to identify findings and challenges to date. Methods This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Four databases were searched in February 2022, with articles then screened in a non-blinded manner by two authors. Results The literature search returned 278 studies, with 11 meeting the eligibility criteria for inclusion. Convolutional neural networks were the most common machine learning approach, with most studies seeking to predict neurodevelopmental outcomes from images and connectomes describing brain structure and function. Studies to date also sought to identify features predictive of outcomes; however, results varied greatly. Conclusions Initial studies in this field have achieved promising results; however, many machine learning techniques remain to be explored, and the consensus is yet to be reached on which clinical and brain features are most predictive of neurodevelopmental outcomes. Impact This systematic review looks at the question of whether machine learning can be used to predict and understand neurodevelopmental outcomes in preterm infants. Our review finds that promising initial works have been conducted in this field, but many challenges and opportunities remain. Quality assessment of relevant articles is conducted using the Newcastle–Ottawa Scale. This work identifies challenges that remain and suggests several key directions for future research. To the best of the authors’ knowledge, this is the first systematic review to explore this topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静的棒棒糖完成签到 ,获得积分10
11秒前
小文子完成签到 ,获得积分10
1分钟前
Jasper应助Zxxxx采纳,获得20
1分钟前
dream完成签到 ,获得积分10
1分钟前
1分钟前
Zxxxx发布了新的文献求助20
1分钟前
小强完成签到 ,获得积分10
1分钟前
土拨鼠完成签到 ,获得积分10
2分钟前
大个应助科研通管家采纳,获得10
2分钟前
孙皓然完成签到 ,获得积分10
2分钟前
Camila完成签到,获得积分10
2分钟前
爱吃鱼的猫完成签到,获得积分10
2分钟前
小么完成签到 ,获得积分10
2分钟前
TOUHOUU完成签到 ,获得积分10
2分钟前
搞怪白秋完成签到 ,获得积分10
3分钟前
coolru完成签到 ,获得积分20
3分钟前
夏夜完成签到 ,获得积分10
3分钟前
现实的俊驰完成签到 ,获得积分10
3分钟前
田様应助Epiphany采纳,获得10
3分钟前
3分钟前
Epiphany发布了新的文献求助10
3分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
Epiphany完成签到,获得积分10
4分钟前
muriel完成签到,获得积分10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
NexusExplorer应助qixinyi采纳,获得10
5分钟前
yhlyhlyhl发布了新的文献求助20
5分钟前
CC完成签到,获得积分0
5分钟前
123完成签到 ,获得积分10
5分钟前
yaya完成签到 ,获得积分10
5分钟前
老石完成签到 ,获得积分10
5分钟前
柠檬完成签到,获得积分10
6分钟前
传奇完成签到 ,获得积分10
6分钟前
大方的笑萍完成签到 ,获得积分10
6分钟前
完美世界应助RaynorHank采纳,获得10
6分钟前
shenerqing发布了新的文献求助10
6分钟前
jsxxd2007应助范范采纳,获得10
7分钟前
al完成签到 ,获得积分10
7分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827322
求助须知:如何正确求助?哪些是违规求助? 3369656
关于积分的说明 10456605
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699830
邀请新用户注册赠送积分活动 817502
科研通“疑难数据库(出版商)”最低求助积分说明 770251