Two-step deep learning approach for pavement crack damage detection and segmentation

分割 计算机科学 人工智能 深度学习 像素 推论 模式识别(心理学)
作者
Yongqing Jiang,Dandan Pang,Chengdong Li,Yulong Yu,Yukang Cao
出处
期刊:International Journal of Pavement Engineering [Taylor & Francis]
卷期号:24 (2) 被引量:16
标识
DOI:10.1080/10298436.2022.2065488
摘要

Crack is a common disease of pavement, which will lead to more serious problems if it is not found and maintained in time. This means that it is very important to accurately extract and measure the damage information of pavement cracks. Compared with the traditional methods, the automatic detection and segmentation of pavement cracks using visual elements are more effective which has become a focused area. Although extensive researches has used deep learning methods in pavement crack detection, these methods only involve the single task of detection or segmentation, and few research optimises and combines them. In addition, the accuracy and inference speed of pavement crack detection and segmentation algorithm is also worthy of further research. To solve these limitations, this research proposes a new method of two-stage pavement crack detection and segmentation based on deep learning. The proposed method combines pavement crack detection and segmentation. In the first stage, the optimised YOLOv4 is used as the pavement crack damage detection algorithm to detect pavement cracks under various complex backgrounds. In the second stage, the cracks detected in the first stage are segmented, the detection accuracy is specific to the damage pixels. To further optimise the performance of the detection and segmentation algorithm, a new deeplabv3+ pavement crack segmentation method based on the Ghost module and CBAM attention mechanism is proposed. Compared with the original network, the proposed two-stage pavement damage detection and segmentation method improve the detection accuracy by 2.23% and 7.47%, respectively. The network inference speed is improved by 35.3% and 50.3%, respectively. Compared with the existing single-stage pavement damage detection or segmentation methods, the proposed method has the advantages of fast inference speed and high detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小羊子完成签到,获得积分10
3秒前
遇见发布了新的文献求助30
3秒前
6秒前
科研通AI5应助虚幻手套采纳,获得30
6秒前
小兔子乖乖完成签到,获得积分10
6秒前
rafa完成签到 ,获得积分10
7秒前
冰魂应助Li采纳,获得10
7秒前
万能图书馆应助小何同学采纳,获得10
8秒前
打打应助虎虎采纳,获得10
8秒前
所所应助夏天的倒影采纳,获得10
9秒前
微笑夏青发布了新的文献求助10
9秒前
瓦猫发布了新的文献求助10
11秒前
谈笑间应助小兔子乖乖采纳,获得10
11秒前
狼牧羊城完成签到,获得积分10
11秒前
小~杰完成签到,获得积分10
12秒前
12秒前
13秒前
遇见完成签到,获得积分10
13秒前
Sandstorm发布了新的文献求助10
15秒前
cdercder应助小欣采纳,获得10
16秒前
guozizi完成签到,获得积分10
17秒前
leeOOO完成签到,获得积分10
18秒前
haralee完成签到 ,获得积分10
20秒前
淡然冬灵应助charming采纳,获得30
20秒前
20秒前
20秒前
勤劳元瑶完成签到,获得积分10
20秒前
20秒前
guozizi发布了新的文献求助10
21秒前
陈陈完成签到,获得积分10
21秒前
小周完成签到 ,获得积分10
22秒前
22秒前
24秒前
科研通AI5应助木木采纳,获得10
24秒前
Shelly发布了新的文献求助10
24秒前
奶牛猫完成签到 ,获得积分10
25秒前
lilylian完成签到,获得积分10
25秒前
yuki发布了新的文献求助10
25秒前
26秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799740
求助须知:如何正确求助?哪些是违规求助? 3345074
关于积分的说明 10323372
捐赠科研通 3061599
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807075
科研通“疑难数据库(出版商)”最低求助积分说明 763462