激酶
心肌肥大
细胞周期蛋白依赖激酶
细胞生物学
细胞周期蛋白依赖激酶4
癌症研究
肌肉肥大
细胞周期蛋白
生物
医学
细胞周期
化学
细胞周期蛋白依赖激酶2
蛋白激酶A
内科学
癌症
作者
Yang-Fei Tong,Yan Wang,Yuanyuan Ding,Jingmei Li,Xichun Pan,Xiaolan Lu,Xiaohong Chen,Ya Liu,Haigang Zhang
摘要
Background/Aims: Adult cardiomyocytes can re-enter cell cycle as stimulated by prohypertrophic factors although they withdraw from cell cycle soon after birth. p21WAF1/CIP1, a cyclin-dependent kinase inhibitor, has been implicated in cardiac hypertrophy, however, its precise contribution to this process remains largely unclear. Methods: The gene expression profile in left ventricle (LV) of spontaneously hypertensive rats (SHR) and Wistar–Kyoto (WKY) rats was determined using quantitative PCR array and verified by real-time PCR and Western blotting. Hypertrophic response of H9c2 cells and neonatal rat ventricular myocytes (NRVM) were induced by angiotensin II (1 µmol/L). Cardiac hypertrophy of mice was elicited by isoproterenol (ISO) infusion (40 mg/kg per day for 14 days). p21-adenovirus and p21-siRNA were employed to transfect NRVM, and sterigmatocystin (STE, 3 mg/kg, ip, qd) was used to inhibit p21 activity. mRNA and protein expression levels of α- and β-myosin heavy chain (MHC), p21WAF1/CIP1, calcineurin (CaN) and atrial natriuretic peptide (ANP) were assayed by realtime PCR and WB, respectively. Results: Sixteen genes showed two-fold or greater changes between SHR and WKY rats, in which the expression of p21WAF1/CIP1 was upregulated by 4.15-fold (P=0.002) and reversed by losartan. Surface area, protein content, mRNA and protein expressions of β-MHC, ANP and p21WAF1/CIP1 in H9c2 cells treated with AngII elevated significantly compared with control group. p21-Ad transfection markedly increased the surface area and β-MHC mRNA expression of normal NRVMs, and p21-siRNA transfection decreased them in AngII-treated NRVMs. STE treatment decreased HW/BW and cross-sectional area, expression levels of β-MHC, ANP and p21 significantly in ISO-treated mice. Conclusion: Our findings suggest that p21 facilitates the development of cardiac hypertrophy, and regulating the expression of p21 may be an approach to attenuate hypertrophic growth of cardiomyocytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI