Understanding face recognition

面部识别系统 心理学 集合(抽象数据类型) 身份(音乐) 面子(社会学概念) 认知 编码(内存) 对象(语法) 视觉对象识别的认知神经科学 认知心理学 面部表情 表达式(计算机科学) 自然语言处理 计算机科学 模式识别(心理学) 沟通 人工智能 语言学 哲学 物理 神经科学 声学 程序设计语言
作者
Vicki Bruce,Andrew W. Young
出处
期刊:British Journal of Psychology [Wiley]
卷期号:77 (3): 305-327 被引量:3834
标识
DOI:10.1111/j.2044-8295.1986.tb02199.x
摘要

The aim of this paper is to develop a theoretical model and a set of terms for understanding and discussing how we recognize familiar faces, and the relationship between recognition and other aspects of face processing. It is suggested that there are seven distinct types of information that we derive from seen faces; these are labelled pictorial, structural, visually derived semantic, identity‐specific semantic, name, expression and facial speech codes. A functional model is proposed in which structural encoding processes provide descriptions suitable for the analysis of facial speech, for analysis of expression and for face recognition units. Recognition of familiar faces involves a match between the products of structural encoding and previously stored structural codes describing the appearance of familiar faces, held in face recognition units. Identity‐specific semantic codes are then accessed from person identity nodes, and subsequently name codes are retrieved. It is also proposed that the cognitive system plays an active role in deciding whether or not the initial match is sufficiently close to indicate true recognition or merely a ‘resemblance’; several factors are seen as influencing such decisions. This functional model is used to draw together data from diverse sources including laboratory experiments, studies of everyday errors, and studies of patients with different types of cerebral injury. It is also used to clarify similarities and differences between processes responsible for object, word and face recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JonyQ完成签到,获得积分20
1秒前
小二郎应助西喜采纳,获得10
3秒前
zhiqing完成签到 ,获得积分10
4秒前
RichieXU完成签到,获得积分10
5秒前
科研通AI5应助dmeng采纳,获得30
5秒前
慕青应助小丽酱采纳,获得30
6秒前
7秒前
7秒前
8秒前
LCMLSM完成签到,获得积分10
8秒前
123完成签到,获得积分20
9秒前
LCMLSM发布了新的文献求助10
11秒前
12秒前
shasha发布了新的文献求助30
12秒前
14秒前
沉默高跟鞋完成签到,获得积分10
15秒前
风儿的声音完成签到,获得积分10
16秒前
可可发布了新的文献求助10
17秒前
光亮的元龙完成签到,获得积分20
17秒前
shasha完成签到,获得积分10
20秒前
英俊的铭应助崔世强采纳,获得10
20秒前
21秒前
煎炒焖煮炸培根完成签到,获得积分10
21秒前
家伟完成签到,获得积分10
21秒前
21秒前
还没想好发布了新的文献求助30
23秒前
SYLH应助22222采纳,获得30
25秒前
26秒前
深情安青应助邢绿凝采纳,获得10
27秒前
wuzihao发布了新的文献求助10
27秒前
27秒前
马华化发布了新的文献求助10
29秒前
开卷有益完成签到,获得积分10
29秒前
30秒前
SciGPT应助lululu采纳,获得10
31秒前
31秒前
31秒前
32秒前
冷傲的凡波完成签到,获得积分10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784148
求助须知:如何正确求助?哪些是违规求助? 3329279
关于积分的说明 10241157
捐赠科研通 3044752
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759268