等离子体驱动器
纳秒
等离子体
介质阻挡放电
边界层
材料科学
涡流
机械
原子物理学
化学
电介质
光学
光电子学
激光器
物理
量子力学
作者
Andrei Starikovskii,A. A. Nikipelov,Maryia Nudnova,Dmitry Roupassov
标识
DOI:10.1088/0963-0252/18/3/034015
摘要
This paper presents a detailed explanation of the physical mechanism of the nanosecond pulsed surface dielectric barrier discharge (SDBD) effect on the flow. Actuator-induced gas velocities show near-zero values for nanosecond pulses. The measurements performed show overheating in the discharge region on fast (τ ≃ 1 µs) thermalization of the plasma input energy. The mean values of such heating of the plasma layer can reach 70 K, 200 K and even 400 K for 7 ns, 12 ns and 50 ns pulse durations, respectively. The emerging shock wave together with the secondary vortex flows disturbs the main flow. The resulting pulsed-periodic disturbance causes an efficient transversal momentum transfer into the boundary layer and further flow attachment to the airfoil surface. Thus, for periodic pulsed nanosecond dielectric barrier discharge, the main mechanism of impact is the energy transfer and heating of the near-surface gas layer. The following pulse-periodic vortex movement stimulates redistribution of the main flow momentum.
科研通智能强力驱动
Strongly Powered by AbleSci AI