Towards mobility-based clustering

聚类分析 计算机科学 钥匙(锁) 样品(材料) 数据挖掘 对象(语法) 人工智能 计算机安全 色谱法 化学
作者
Siyuan Liu,Yunhuai Liu,Lionel M. Ni,Jianping Fan,Minglu Li
标识
DOI:10.1145/1835804.1835920
摘要

Identifying hot spots of moving vehicles in an urban area is essential to many smart city applications. The practical research on hot spots in smart city presents many unique features, such as highly mobile environments, supremely limited size of sample objects, and the non-uniform, biased samples. All these features have raised new challenges that make the traditional density-based clustering algorithms fail to capture the real clustering property of objects, making the results less meaningful. In this paper we propose a novel, non-density-based approach called mobility-based clustering. The key idea is that sample objects are employed as "sensors" to perceive the vehicle crowdedness in nearby areas using their instant mobility, rather than the "object representatives". As such the mobility of samples is naturally incorporated. Several key factors beyond the vehicle crowdedness have been identified and techniques to compensate these effects are proposed. We evaluate the performance of mobility-based clustering based on real traffic situations. Experimental results show that using 0.3% of vehicles as the samples, mobility-based clustering can accurately identify hot spots which can hardly be obtained by the latest representative algorithm UMicro.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nkuhao完成签到,获得积分10
刚刚
1秒前
小王发布了新的文献求助30
1秒前
酒醉的蝴蝶完成签到,获得积分10
1秒前
顺心天磊完成签到 ,获得积分20
3秒前
uuinn完成签到,获得积分10
4秒前
5秒前
百事从欢完成签到,获得积分10
8秒前
8秒前
Orange应助何雨航采纳,获得10
9秒前
9秒前
CodeCraft应助啊甘呢采纳,获得10
10秒前
自觉的诺言完成签到,获得积分10
10秒前
11秒前
LX完成签到 ,获得积分10
12秒前
14秒前
14秒前
lily完成签到,获得积分10
14秒前
李微发布了新的文献求助50
14秒前
15秒前
阿独发布了新的文献求助10
15秒前
Sera发布了新的文献求助10
15秒前
充电宝应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得30
16秒前
感动友桃应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
万能图书馆应助韩凡采纳,获得10
16秒前
16秒前
事上炼应助科研通管家采纳,获得10
17秒前
changping应助科研通管家采纳,获得150
17秒前
rrjl发布了新的文献求助10
17秒前
17秒前
积极向上的阿闯完成签到,获得积分10
17秒前
farmeryxt应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299311
求助须知:如何正确求助?哪些是违规求助? 4447519
关于积分的说明 13843004
捐赠科研通 4333113
什么是DOI,文献DOI怎么找? 2378534
邀请新用户注册赠送积分活动 1373842
关于科研通互助平台的介绍 1339360