Plot-level trunk detection and reconstruction using one-scan-mode terrestrial laser scanning data

后备箱 绘图(图形) 激光扫描 计算机科学 森林资源清查 点云 遥感 校准 树(集合论) 激光器 参考数据 林地 数据处理 人工智能 数据挖掘 数学 统计 森林经营 数据库 地理 光学 林业 医学 生态学 数学分析 物理 荟萃分析 内科学 生物
作者
Xinlian Liang,Paula Litkey,Juha Hyyppä,Antero Kukko,Harri Kaartinen,Markus Holopainen
出处
期刊:International Workshop on Earth Observation and Remote Sensing Applications 卷期号:36: 1-5 被引量:26
标识
DOI:10.1109/eorsa.2008.4620313
摘要

The applicability of terrestrial laser scanning (TLS) data for quantitative forest inventory has received increasing attention in the last decade. So far, research has been carried out for individual trunk modeling and plot-level forest parameter determination mainly from multi-scan-mode (MSM) TLS data. While MSM data, on the average, provide whole coverage of trunk and potentially lead to high reconstruction accuracy, it is of rising practical interest to study how well one-scan-mode (OSM) laser data could provide plot-level forest information, e.g. location, number of trees and breast height diameter of individual trees, in mainly one-storey stands, with lower expense, faster data collection and enhanced processing to collect e.g. reference and calibration data for airborne laser scanning based forest inventory. In general, to achieve plot-level trunk modeling, three main problems need to be solved. First, meaningful laser points need to be identified from data set, originally consisting of several millions points, for computational reasons; second, trunk points need to be recognized as precisely as possible, to facilitate localized modeling process; third, trunk reconstruction needs to be automatic and computationally acceptable, to give certain level details, but still enable fast processing. In this paper, a new tree detecting and trunk modeling mechanism is proposed, based on point distribution analysis, trunk finding and slice-by-slice circle fitting. The emphasis of this paper is on exploring the applicability of OSM laser data for plot-level inventory and automatic solution. The test area is a pine-dominated forest. Reference measurements from intensity image are used for validation. Experimental result shows that OSM-based TLS data is feasible for plot-level automation to deliver basic plot level information: detection of the most of the trunks, and reconstructing the DBH.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助zzz采纳,获得10
1秒前
2秒前
让我康康完成签到 ,获得积分10
3秒前
山色青完成签到,获得积分10
4秒前
mmmmm完成签到,获得积分10
4秒前
qqq完成签到,获得积分10
5秒前
西因发布了新的文献求助10
6秒前
6秒前
可爱的函函应助山木采纳,获得10
7秒前
自然的霸发布了新的文献求助10
8秒前
asdzsx完成签到,获得积分10
10秒前
11秒前
李顺杰完成签到,获得积分10
11秒前
善学以致用应助小鲨鱼采纳,获得10
12秒前
alan完成签到,获得积分10
12秒前
消摇完成签到,获得积分10
13秒前
Lydia完成签到,获得积分10
15秒前
fxx完成签到,获得积分10
16秒前
打打应助自然的霸采纳,获得10
17秒前
科研通AI6应助asdzsx采纳,获得10
17秒前
18秒前
20秒前
21秒前
得過且過发布了新的文献求助10
23秒前
优秀发布了新的文献求助10
25秒前
26秒前
司连喜发布了新的文献求助10
26秒前
26秒前
dzzza完成签到,获得积分10
28秒前
科目三应助优秀采纳,获得10
30秒前
月军发布了新的文献求助10
30秒前
小二郎应助恶恶么v采纳,获得10
30秒前
32秒前
夙夙完成签到 ,获得积分20
33秒前
西因完成签到,获得积分20
33秒前
黄小北发布了新的文献求助10
37秒前
司连喜完成签到,获得积分10
39秒前
所所应助M95采纳,获得10
40秒前
CodeCraft应助蝶步韶华采纳,获得10
45秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784872
求助须知:如何正确求助?哪些是违规求助? 4111950
关于积分的说明 12721074
捐赠科研通 3836708
什么是DOI,文献DOI怎么找? 2115432
邀请新用户注册赠送积分活动 1138394
关于科研通互助平台的介绍 1024526