材料科学
碲化铋
热电效应
兴奋剂
凝聚态物理
热电材料
晶界
相(物质)
铋
等温过程
碲化物
电子迁移率
热导率
冶金
热力学
光电子学
微观结构
复合材料
化学
物理
有机化学
作者
Hsin‐Jay Wu,Wan Ting Yen
标识
DOI:10.1016/j.actamat.2018.07.022
摘要
For decades, the Bismuth-telluride (Bi2Te3) has been intensively studied as the thermoelectric (TE) cooler. Still, new ideas and emerging results are put forward for raising the conversion efficiency. Herein, we re-visit the Cu-doped Bi2Te3, and report the high zT values nearing the room temperature, for both the p-type (Cu2Te)0.01(Bi2Te3)0.99/Cu0.01Bi1.99Te3 (zT∼1.2 at 300 K) as well as the n-type (Cu2Te)0.09(Bi2Te3)0.91 (zT∼1.09 at 363 K), respectively. Given that the phase boundary mapping is essential for the optimization of high-efficiency TE materials, the isothermal section of ternary Bi-Cu-Te at 523 K is constructed, by collecting the phase equilibria information of various thermally-equilibrated alloys; it further guides the alloying directions for (Cu2Te)x (Bi2Te3)1-x and CuyBi2-yTe3, respectively. Small modulation in the stoichiometry leads to the carrier type transition. As a consequence, the lamellae composed of Bi2Te3 and Cu7Te5 precipitate along the grain boundary of the n-type (Cu2Te)0.09(Bi2Te3)0.91, resulting in the reduced κ, due to the stronger interfacial phonon scattering, and the higher PF, owing to the higher amounts of Te vacancy (VTe). On the contrary, the promising p-type (Cu2Te)0.01(Bi2Te3)0.99/Cu0.01Bi1.99Te3 features the single-phase Bi2Te3, whereas the soluble Cu introduces extra holes and might therefore promote the p-type conduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI