DFUNet: Convolutional Neural Networks for Diabetic Foot Ulcer Classification

卷积神经网络 糖尿病足溃疡 糖尿病足 人工智能 医学 深度学习 特征提取 机器学习 糖尿病 计算机科学 内分泌学
作者
Manu Goyal,Neil D. Reeves,Adrian K. Davison,Satyan Rajbhandari,Jennifer Spragg,Moi Hoon Yap
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:4 (5): 728-739 被引量:217
标识
DOI:10.1109/tetci.2018.2866254
摘要

Globally, in 2016, 1 out of 11 adults suffered from diabetes mellitus. Diabetic foot ulcers (DFU) are a major complication of this disease, which if not managed properly can lead to amputation. Current clinical approaches to DFU treatment rely on patient and clinician vigilance, which has significant limitations, such as the high cost involved in the diagnosis, treatment, and lengthy care of the DFU. We collected an extensive dataset of foot images, which contain DFU from different patients. In this DFU classification problem, we assessed the two classes as normal skin (healthy skin) and abnormal skin (DFU). In this paper, we have proposed the use of machine learning algorithms to extract the features for DFU and healthy skin patches to understand the differences in the computer vision perspective. This experiment is performed to evaluate the skin conditions of both classes that are at high risk of misclassification by computer vision algorithms. Furthermore, we used convolutional neural networks for the first time in this binary classification. We have proposed a novel convolutional neural network architecture, DFUNet, with better feature extraction to identify the feature differences between healthy skin and the DFU. Using 10-fold cross validation, DFUNet achieved an AUC score of 0.961. This outperformed both the traditional machine learning and deep learning classifiers we have tested. Here, we present the development of a novel and highly sensitive DFUNet for objectively detecting the presence of DFUs. This novel approach has the potential to deliver a paradigm shift in diabetic foot care among diabetic patients, which represent a cost-effective, remote, and convenient healthcare solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空啊空发布了新的文献求助10
刚刚
嘘嘘发布了新的文献求助20
1秒前
小伊001完成签到,获得积分10
4秒前
热热完成签到 ,获得积分10
4秒前
开心的吗喽完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
biubiu完成签到,获得积分10
6秒前
在水一方应助梦里采纳,获得10
6秒前
Dotuu发布了新的文献求助10
6秒前
笑笑完成签到,获得积分10
6秒前
东方紫槐完成签到 ,获得积分10
8秒前
粗心的沉鱼完成签到,获得积分10
9秒前
88C真是太神奇啦完成签到,获得积分10
9秒前
大模型应助不安的乐松采纳,获得10
10秒前
亮liang完成签到,获得积分10
10秒前
11秒前
顾矜应助小番茄采纳,获得10
13秒前
小蘑菇应助多情罡采纳,获得10
13秒前
14秒前
15秒前
明亮的毛豆完成签到,获得积分20
15秒前
16秒前
zhmihep完成签到,获得积分10
18秒前
丢手绢发布了新的文献求助30
22秒前
22秒前
小小小完成签到 ,获得积分10
22秒前
22秒前
22秒前
27秒前
怡然的友容完成签到,获得积分10
27秒前
落云渊关注了科研通微信公众号
27秒前
28秒前
廖肖雷完成签到 ,获得积分10
28秒前
jinjun发布了新的文献求助10
28秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
安安发布了新的文献求助10
31秒前
李健应助佩奇采纳,获得10
31秒前
所所应助牟牟采纳,获得30
31秒前
32秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454502
求助须知:如何正确求助?哪些是违规求助? 4561872
关于积分的说明 14283729
捐赠科研通 4485731
什么是DOI,文献DOI怎么找? 2456949
邀请新用户注册赠送积分活动 1447620
关于科研通互助平台的介绍 1422846