Federated Deep Knowledge Tracing

计算机科学 追踪 知识抽取 深度学习 构造(python库) 人工智能 质量(理念) 数据质量 机器学习 数据科学 知识管理 工程类 操作系统 哲学 认识论 公制(单位) 程序设计语言 运营管理
作者
Jinze Wu,Zhenya Huang,Qi Liu,Defu Lian,Hao Wang,Enhong Chen,Haiping Ma,Shijin Wang
标识
DOI:10.1145/3437963.3441747
摘要

Knowledge tracing is a fundamental task in intelligent education for tracking the knowledge states of students on necessary concepts. In recent years, Deep Knowledge Tracing (DKT) utilizes recurrent neural networks to model student learning sequences. This approach has achieved significant success and has been widely used in many educational applications. However, in practical scenarios, it tends to suffer from the following critical problems due to data isolation: 1) Data scarcity. Educational data, which is usually distributed across different silos (e.g., schools), is difficult to gather. 2) Different data quality. Students in different silos have different learning schedules, which results in unbalanced learning records, meaning that it is necessary to evaluate the learning data quality independently for different silos. 3) Data incomparability. It is difficult to compare the knowledge states of students with different learning processes from different silos. Inspired by federated learning, in this paper, we propose a novel Federated Deep Knowledge Tracing (FDKT) framework to collectively train high-quality DKT models for multiple silos. In this framework, each client takes charge of training a distributed DKT model and evaluating data quality by leveraging its own local data, while a center server is responsible for aggregating models and updating the parameters for all the clients. In particular, in the client part, we evaluate data quality incorporating different education measurement theories, and we construct two quality-oriented implementations based on FDKT, i.e., FDKTCTT and FDKTIRT-where the means of data quality evaluation follow Classical Test Theory and Item Response Theory, respectively. Moreover, in the server part, we adopt hierarchical model interpolation to uptake local effects for model personalization. Extensive experiments on real-world datasets demonstrate the effectiveness and superiority of the FDKT framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akim应助SC30采纳,获得10
1秒前
1秒前
体贴成危完成签到,获得积分10
1秒前
田小姐发布了新的文献求助10
2秒前
3秒前
3秒前
领导范儿应助年糕大王采纳,获得50
5秒前
小陈发布了新的文献求助10
5秒前
神勇秋白完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
Yuanyuan发布了新的文献求助10
8秒前
神勇秋白发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
13秒前
14秒前
罗dd完成签到,获得积分10
14秒前
15秒前
端庄卿发布了新的文献求助10
15秒前
怡然千柳完成签到,获得积分10
16秒前
16秒前
哦豁完成签到 ,获得积分10
16秒前
17秒前
慕青应助HY采纳,获得10
17秒前
17秒前
18秒前
19秒前
FashionBoy应助fl19901010采纳,获得10
19秒前
达不刘发布了新的文献求助30
19秒前
田様应助诗酒采纳,获得10
20秒前
20秒前
FashionBoy应助清水烫春菜采纳,获得10
22秒前
22秒前
热心芷雪发布了新的文献求助10
23秒前
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5744681
求助须知:如何正确求助?哪些是违规求助? 5421187
关于积分的说明 15350539
捐赠科研通 4884846
什么是DOI,文献DOI怎么找? 2626193
邀请新用户注册赠送积分活动 1574947
关于科研通互助平台的介绍 1531779