化学
固定化酶
戊二醛
纤维二糖
热稳定性
吸附
水解
色谱法
工业与生产工程
酶分析
酶
纤维素酶
生物化学
有机化学
电气工程
工程类
作者
Xu Deng,Tian He,Jun Li,Huiling Duan,Zhi‐Qi Zhang
标识
DOI:10.1007/s00449-020-02406-5
摘要
With proper design, immobilization can be useful tool to improve the stability of enzymes, and in certain cases even their activity, selectivity, productivity and economic viability. An immobilized β-glucosidase (BGL, EC 3.2.1.21) through matrix adsorption and cross-linked enzyme aggregate (ad-CLEA) technology is presented in this work. After adsorption and precipitation, BGL was immobilized to poly(glycidyl methacrylate-co-ethylenedimethacrylate) (PGMA/EDMA) microparticles using glutaraldehyde as the cross-linker. Immobilized BGL exhibits lower apparent Km but much higher Vmax than that of the soluble enzyme, suggesting greater enzyme–substrate affinity and rapid velocity. Besides, ad-CLEA-BGL presents better thermostability retaining activity nearly 70% for 3 h and approximately 50% for 5 h at 70 °C, high operational reusability remaining more than 90% activity after nine uses and excellent storage stability holding about 95% activity after 45 days. Furthermore, the cellobiose is completely hydrolyzed within 1 h with ad-CLEA-BGL, which is significantly more efficient than soluble enzyme (about 4 h). Therefore, BGL was successfully immobilized on PGMA/EDMA microparticles with an ad-CLEA technology and the immobilization greatly enhances the biochemical characteristics. This work indicates promising application for ad-CLEA-BGL in utilizing agricultural remnants, bio-converting cellobiose to fermentable reducing sugar and ethanol production.
科研通智能强力驱动
Strongly Powered by AbleSci AI