伯努利分布
卡尔曼滤波器
控制理论(社会学)
非线性系统
无味变换
协方差
伯努利原理
数学
扩展卡尔曼滤波器
饱和(图论)
有界函数
随机变量
不变扩展卡尔曼滤波器
计算机科学
算法
工程类
统计
人工智能
数学分析
物理
组合数学
航空航天工程
量子力学
控制(管理)
作者
Jiyong Lu,Weizhen Wang,Li Li,Yanping Guo
摘要
Abstract In this paper, an unscented Kalman filtering problem is studied for a nonlinear system with sensor saturation and randomly occurring false data injection attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring false data injection attacks. The aim of this paper is to design a modified unscented Kalman filter by minimizing an upper bound of filtering error covariance. Furthermore, a sufficient condition is provided to ensure an exponentially bounded filtering error in the mean square sense. Numerical simulations are presented to illustrate the validity of the proposed filter.
科研通智能强力驱动
Strongly Powered by AbleSci AI