亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lucas–Washburn Equation-Based Modeling of Capillary-Driven Flow in Porous Systems

毛细管作用 多孔介质 毛细管压力 流体力学 流量(数学) 多相流 机械 多孔性 计算机科学 热力学 物理 工程类 岩土工程
作者
Jianchao Cai,Tingxu Jin,Jisheng Kou,Shuangmei Zou,Junfeng Xiao,Qingbang Meng
出处
期刊:Langmuir [American Chemical Society]
卷期号:37 (5): 1623-1636 被引量:263
标识
DOI:10.1021/acs.langmuir.0c03134
摘要

Fluid flow in porous systems driven by capillary pressure is one of the most ubiquitous phenomena in nature and industry, including petroleum and hydraulic engineering as well as material and life sciences. The classical Lucas–Washburn (LW) equation and its modified forms were developed and have been applied extensively to elucidate the fundamental mechanisms underlying the basic statics and dynamics of the capillary-driven flow in porous systems. The LW equation assumes that fluids are incompressible Newton ones and that capillary channels all have the same radii. This kind of hypothesis is not true for many natural situations, however, where porous systems comprise complicated pore and capillary channel structures at microscales. The LW equation therefore often leads to inaccurate capillary imbibition predictions in such situations. Numerous studies have been conducted in recent years to develop and assess the modifications and extensions of the LW equation in various porous systems. Significant progresses in computational techniques have also been attained to further improve our understanding of imbibition dynamics. A state-of-the-art review is therefore needed to summarize the recent significant models and numerical simulation techniques as well as to discuss key ongoing research topics arising from various new engineering practices. The theoretical basis of the LW equation is first introduced in this review and recent progress in mathematical models is then summarized to demonstrate the modifications and extensions of this equation to various microchannels and porous media. These include capillary tubes with nonuniform and noncircular cross sections, discrete fractures, and capillary tubes that are not straight as well as heterogeneous porous media. Numerical studies on the LW equation are also reviewed, and comments on future works and research directions for LW-based capillary-driven flows in porous systems are listed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助火星上小珍采纳,获得10
9秒前
敏感剑鬼发布了新的文献求助10
12秒前
21秒前
大个应助斯文可仁采纳,获得10
28秒前
41秒前
无花果应助科研通管家采纳,获得10
42秒前
汉堡包应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
斯文可仁发布了新的文献求助10
45秒前
敏感剑鬼发布了新的文献求助10
1分钟前
1分钟前
言1222完成签到,获得积分10
1分钟前
言1222发布了新的文献求助10
1分钟前
znn完成签到 ,获得积分10
1分钟前
zsmj23完成签到 ,获得积分0
2分钟前
所所应助肆陆采纳,获得10
2分钟前
善学以致用应助言1222采纳,获得10
2分钟前
h0jian09完成签到,获得积分10
2分钟前
纳米完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
Hans完成签到,获得积分10
2分钟前
automan完成签到,获得积分10
3分钟前
3分钟前
火火完成签到 ,获得积分10
3分钟前
3分钟前
从容芮完成签到,获得积分0
4分钟前
numagok完成签到,获得积分10
4分钟前
mashibeo完成签到,获得积分10
4分钟前
脑洞疼应助如意的大神采纳,获得10
4分钟前
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
肆陆发布了新的文献求助10
4分钟前
4分钟前
m(_._)m完成签到 ,获得积分0
5分钟前
斯文可仁发布了新的文献求助20
6分钟前
FashionBoy应助Banana采纳,获得10
6分钟前
开心雁完成签到 ,获得积分20
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780795
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226542
捐赠科研通 3041481
什么是DOI,文献DOI怎么找? 1669449
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758732