Isotope signature of maize stem and leaf and investigation of transpiration and water transport

蒸腾作用 同位素 干旱 环境科学 同位素分馏 分馏 同位素特征 稳定同位素比值 化学 示踪剂 光合作用 水运 植物 生物 土壤科学 生态学 物理 水流 核物理学 有机化学 量子力学
作者
Youjie Wu,Taisheng Du,Lixin Wang
出处
期刊:Agricultural Water Management [Elsevier BV]
卷期号:247: 106727-106727 被引量:11
标识
DOI:10.1016/j.agwat.2020.106727
摘要

Stable isotope signature of plant water contains essential information on water transport pathway and plant transpiration, which has been shown to be a powerful tracer in plant physiological and ecological processes. However, stable isotopes fractionation in processes of plant water transport and the relationship between transpiration rate (E) and effective pathway length (L) and their possible mechanisms are still largely mysterious and confusing. Here, we tested stable isotope signature of maize stem and leaf based on anatomical measurements and modeling, and propose a deuterium deviation in leaf water (Δd) to understand variability leaf water isotope enrichment and transpiration. We found isotopes fractionation occurred in maize stems in arid area. Leaf transpiration rate was strongly affected by Δd. The data revealed L has a negative power relationship with E, with a single power function of L = 284.77E−1.02; and the proportional deviation of leaf 18O enrichment 1 − ΔL/ΔE is negatively correlated with E under low E (E < 2.0 mmol m−2 s−1) and, a positively relationship under high E (E > 2.0 mmol m−2 s−1). Suggesting that a pivotal role of effective path length in driving variations in leaf transpiration rate. The deuterium deviation Δd may have great potential to serve as a new diagnostic tool for understanding pathways of water transport in plant. Care should be taken when examining source-water and estimating roots water uptake using the stable isotope method in arid areas, and further study is needed to be carried out and confirm the conclusions across a range of environmental conditions and species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
zhu发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
李子发布了新的文献求助10
3秒前
4秒前
1234发布了新的文献求助10
4秒前
5秒前
汉堡包应助佳丽采纳,获得10
5秒前
TT完成签到 ,获得积分10
6秒前
慵懒的树发布了新的文献求助10
6秒前
6秒前
Zefinity完成签到,获得积分10
7秒前
huanir99发布了新的文献求助80
8秒前
二六发布了新的文献求助10
8秒前
烂漫映之完成签到 ,获得积分10
8秒前
陈竞扬发布了新的文献求助10
9秒前
沉静的天曼关注了科研通微信公众号
10秒前
xiaoying发布了新的文献求助10
10秒前
李健的粉丝团团长应助Emma采纳,获得10
11秒前
阅遍SCI完成签到,获得积分10
11秒前
12秒前
二六完成签到,获得积分10
13秒前
TOM龙完成签到,获得积分10
15秒前
CipherSage应助GQ采纳,获得10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4523026
求助须知:如何正确求助?哪些是违规求助? 3964419
关于积分的说明 12287651
捐赠科研通 3628406
什么是DOI,文献DOI怎么找? 1996719
邀请新用户注册赠送积分活动 1033290
科研通“疑难数据库(出版商)”最低求助积分说明 922968