药物反应
药品
计算生物学
癌细胞系
癌细胞
抗癌药物
癌症
细胞
癌症研究
生物
药理学
遗传学
作者
Wei Zhao,Jun Li,Mei-Ju M. Chen,Yikai Luo,Zhenlin Ju,Nicole K. Nesser,Katie Johnson-Camacho,Christopher Boniface,Yancey Lawrence,Nupur T. Pande,Michael A. Davies,Meenhard Herlyn,Taru Muranen,Ioannis K. Zervantonakis,Erika von Euw,André Schultz,Shwetha V. Kumar,Anil Korkut,Paul T. Spellman,Rehan Akbani
出处
期刊:Cancer Cell
[Cell Press]
日期:2020-11-05
卷期号:38 (6): 829-843.e4
被引量:54
标识
DOI:10.1016/j.ccell.2020.10.008
摘要
Perturbation biology is a powerful approach to modeling quantitative cellular behaviors and understanding detailed disease mechanisms. However, large-scale protein response resources of cancer cell lines to perturbations are not available, resulting in a critical knowledge gap. Here we generated and compiled perturbed expression profiles of ∼210 clinically relevant proteins in >12,000 cancer cell line samples in response to ∼170 drug compounds using reverse-phase protein arrays. We show that integrating perturbed protein response signals provides mechanistic insights into drug resistance, increases the predictive power for drug sensitivity, and helps identify effective drug combinations. We build a systematic map of "protein-drug" connectivity and develop a user-friendly data portal for community use. Our study provides a rich resource to investigate the behaviors of cancer cells and the dependencies of treatment responses, thereby enabling a broad range of biomedical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI