聚合物太阳能电池
材料科学
聚合物
共轭体系
活动层
光电子学
能量转换效率
纳米技术
光活性层
图层(电子)
薄膜晶体管
复合材料
作者
Tingbin Yang,Ming Wang,Chunhui Duan,Xiaowen Hu,Lin Huang,Junbiao Peng,Fei Huang,Xiong Gong
摘要
Bulk heterojunction (BHJ) polymer solar cells (PSCs) that can be fabricated by solution processing techniques are under intense investigation in both academic institutions and industrial companies because of their potential to enable mass production of flexible and cost-effective alternative to silicon-based solar cells. A combination of novel polymer development, nanoscale morphology control and processing optimization has led to over 8% power conversion efficiencies (PCEs) for BHJ PSCs with a conventional device structure. Attempts to develop PSCs with an inverted device structure as required for achieving high PECs and good stability have, however, met with limited success. Here, we report that a high PCE of 8.4% under AM 1.5G irradiation was achieved for BHJ PSCs with an inverted device structure. This high efficiency was obtained through interfacial engineering of solution-processed electron extraction layer, leading to facilitate electron transport and suppress bimolecular recombination. These results provided an important progress for solution-processed PSCs, and demonstrated that PSCs with an inverted device structure are comparable with PSCs with the conventional device structure.
科研通智能强力驱动
Strongly Powered by AbleSci AI