亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Electronic Thermal Conductivity of Graphene

热导率 凝聚态物理 石墨烯 Wiedemann–Franz law 材料科学 声子 声子散射 热传导 散射 纳米技术 物理 光学 复合材料
作者
Tae Yun Kim,Cheol-Hwan Park,Nicola Marzari
出处
期刊:Nano Letters [American Chemical Society]
卷期号:16 (4): 2439-2443 被引量:190
标识
DOI:10.1021/acs.nanolett.5b05288
摘要

Graphene, as a semimetal with the largest known thermal conductivity, is an ideal system to study the interplay between electronic and lattice contributions to thermal transport. While the total electrical and thermal conductivity have been extensively investigated, a detailed first-principles study of its electronic thermal conductivity is still missing. Here, we first characterize the electron-phonon intrinsic contribution to the electronic thermal resistivity of graphene as a function of doping using electronic and phonon dispersions and electron-phonon couplings calculated from first principles at the level of density-functional theory and many-body perturbation theory (GW). Then, we include extrinsic electron-impurity scattering using low-temperature experimental estimates. Under these conditions, we find that the in-plane electronic thermal conductivity of doped graphene is ~300 W/mK at room temperature, independently of doping. This result is much larger than expected, and comparable to the total thermal conductivity of typical metals, contributing ~10 % to the total thermal conductivity of bulk graphene. Notably, in samples whose physical or domain sizes are of the order of few micrometers or smaller, the relative contribution coming from the electronic thermal conductivity is more important than in the bulk limit, since lattice thermal conductivity is much more sensitive to sample or grain size at these scales. Last, when electron-impurity scattering effects are included, we find that the electronic thermal conductivity is reduced by 30 to 70 %. We also find that the Wiedemann-Franz law is broadly satisfied at low and high temperatures, but with the largest deviations of 20-50 % around room temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shennie发布了新的文献求助30
3秒前
东方三问应助xuyu采纳,获得10
5秒前
等待的熊猫完成签到 ,获得积分10
12秒前
Joanna完成签到,获得积分10
17秒前
棠臻完成签到 ,获得积分10
17秒前
Joanna发布了新的文献求助10
21秒前
shennie完成签到,获得积分10
21秒前
study1111发布了新的文献求助30
23秒前
Qian发布了新的文献求助10
23秒前
Leonard应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
25秒前
浮游应助科研通管家采纳,获得10
25秒前
25秒前
26秒前
gym完成签到,获得积分10
27秒前
27秒前
27秒前
27秒前
susu发布了新的文献求助10
29秒前
dcy完成签到,获得积分10
31秒前
沧海静音发布了新的文献求助10
32秒前
科目三应助gym采纳,获得10
32秒前
33秒前
糊涂的笑天完成签到 ,获得积分10
34秒前
wyh发布了新的文献求助10
34秒前
小马哥完成签到,获得积分10
36秒前
嵇元容发布了新的文献求助10
37秒前
susu完成签到,获得积分20
38秒前
陈末应助study1111采纳,获得10
39秒前
新123完成签到,获得积分10
39秒前
wyh完成签到,获得积分10
39秒前
充电宝应助wyh采纳,获得10
45秒前
Hello应助susu采纳,获得10
46秒前
50秒前
histamin完成签到,获得积分10
50秒前
Layen完成签到,获得积分20
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458817
求助须知:如何正确求助?哪些是违规求助? 4564805
关于积分的说明 14296938
捐赠科研通 4489857
什么是DOI,文献DOI怎么找? 2459372
邀请新用户注册赠送积分活动 1449054
关于科研通互助平台的介绍 1424535