The neural generators of the mismatch responses to Mandarin lexical tones: An MEG study

脑磁图 脑功能偏侧化 心理学 失配负性 听力学 听觉皮层 怪胎范式 脑电图 大脑活动与冥想 脑岛 神经科学 事件相关电位 医学
作者
Chih Yang Hsu,Sheng Kai Lin,Yu‐Chao Hsu,Chia Ying Lee
出处
期刊:Brain Research [Elsevier BV]
卷期号:1582: 154-166 被引量:20
标识
DOI:10.1016/j.brainres.2014.07.023
摘要

The present magnetoencephalography study used the cortically constrained minimum-norm estimates of human brain activity to elucidate functional roles of neural generators for detecting different magnitudes of lexical tones changes. A multiple-deviant oddball paradigm was used in which the syllable “yi” with a low-dipping tone (T3) was the common standard sound and the same syllable with a high-level tone (T1) or a high-rising tone (T2) were the large and small deviant sounds, respectively. The data revealed a larger magnetic mismatch field (MMNm) for large deviant in the left hemisphere. The source analysis also confirmed that the MMNm to lexical tone changes was generated in bilateral superior temporal gyri and only the large deviant revealed left lateralization. A set of frontal generators was activated at a later time and revealed differential sensitivities to the degree of deviance. The left anterior insula, the right anterior cingulate cortex, and the right ventral orbital frontal cortex were activated when detecting a large deviant, whereas the right frontal-opercular region was sensitive to the small deviant. These frontal generators were thought to be associated with various top-down mechanisms for attentional modulation. The time frequency (TF) analysis showed that large deviants yielded large theta band (5–7 Hz) activity over the left anterior scalp and the left central scalp, while small deviants yielded large alpha band activity (9–11 Hz) over the posterior scalp. The results of TF analyses implied that mechanisms of working memory and functional inhibition involved in the processes of acoustic change detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈的平文完成签到 ,获得积分10
2秒前
2秒前
LL完成签到,获得积分10
2秒前
3秒前
ccc完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
情怀应助fff采纳,获得10
5秒前
5秒前
挽风完成签到 ,获得积分10
6秒前
慢慢完成签到 ,获得积分10
6秒前
MJQ发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
魏一麦关注了科研通微信公众号
7秒前
7秒前
小马甲应助hhhblabla采纳,获得10
7秒前
华安发布了新的文献求助10
8秒前
得得完成签到,获得积分10
8秒前
YO!完成签到 ,获得积分10
8秒前
俊秀的芫发布了新的文献求助10
8秒前
zho发布了新的文献求助30
9秒前
9秒前
9秒前
CH发布了新的文献求助10
10秒前
尊敬沧海发布了新的文献求助10
10秒前
10秒前
keiiin发布了新的文献求助10
11秒前
得得发布了新的文献求助10
11秒前
12秒前
善学以致用应助MJQ采纳,获得20
13秒前
14秒前
快乐的篮球完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
科研通AI5应助anny2022采纳,获得30
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662667
求助须知:如何正确求助?哪些是违规求助? 3223466
关于积分的说明 9751694
捐赠科研通 2933372
什么是DOI,文献DOI怎么找? 1606058
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734754