生物
细胞生物学
串扰
核糖体s6激酶
转录因子
鞘氨醇激酶1
TLR4型
干扰素调节因子
PI3K/AKT/mTOR通路
免疫系统
信号转导
免疫学
受体
先天免疫系统
鞘氨醇
基因
遗传学
1-磷酸鞘氨醇
P70-S6激酶1
光学
物理
作者
Anouk Zaal,Benjamin Nota,Kat Moore,Miranda Dieker,S. Marieke van Ham,Anja ten Brinke
标识
DOI:10.1189/jlb.2ma0217-058r
摘要
Abstract Crosstalk between complement component 5a receptors (C5aRs) and TLRs in dendritic cells (DCs) occurs upon pathogen invasion; however, studies on C5aR and TLR crosstalk mainly focused on the modulating effect of C5a on TLR-induced cytokine production. To elucidate the breadth of C5aR and TLR4 crosstalk, the effect of simultaneous treatment with C5a and LPS was investigated in human monocyte-derived DCs (moDCs) 2 h after stimulation using whole transcriptome sequencing analysis. Although the effect of C5a on hallmark genes defining TLR4-induced DC maturation was limited at this time point, RNA sequencing analysis revealed a great variety of novel C5a targets, of which many interfere with TLR4-mediated immune activation. Analysis of functional relationships among these genes uncovered induction of a central immune regulatory network upon C5aR and TLR4 crosstalk, involving the transcription factors forkhead box (FOX)O1 and FOXO3 and the signaling molecules serum- and glucocorticoid-inducible kinase (SGK1), ribosomal S6 kinase 2 (RSK2), and PI3Kβ. C5aR and TLR crosstalk, furthermore, yielded down-regulation of mainly proinflammatory network branches, including IL-12B, IL-2Rα (IL-2RA), and jagged 1 (JAG1) and cooperative induction of predominantly anti-inflammatory network branches, including sphingosine kinase 1 (SPHK1), β2 adrenergic receptor (ADRB2), gastric inhibitory polypeptide receptor (GIPR), and four-and-a-half Lin11, Isl-1, and Mec-3 domains protein 2 (FHL2). Together, these data point toward induction of generalized immune regulation of DC function. Motif enrichment analysis indicate a prominent role for basic leucine zipper (bZIP) and IFN regulatory factor 4 (IRF4) transcription factors upon C5aR and TLR4 crosstalk. Additionally, differences were observed in the modulating capacity of C5a on DCs in the absence or presence of a pathogen (TLR stimulus). Our findings shed new light on the depth and complexity of C5aR and TLR4 crosstalk and provide new foci of research for future studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI