清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis

内科学 内分泌学 胆固醇7α羟化酶 激素 甾醇调节元件结合蛋白 化学 平衡 甲状腺 胆汁酸 医学 胆固醇 甾醇
作者
Yongfeng Song,Chao Xu,Shanshan Shao,Jun Liu,Xing Wanjia,Jin Xu,Chengkun Qin,Chunyou Li,Baoxiang Hu,Shounan Yi,Xuefeng Xia,Haiqing Zhang,Xiujuan Zhang,Tingting Wang,Wenfei Pan,Chunxiao Yu,Qiangxiu Wang,Xiaoyan Lin,Laicheng Wang,Ling Gao
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:62 (5): 1171-1179 被引量:97
标识
DOI:10.1016/j.jhep.2014.12.006
摘要

Background & Aims Bile acids (BAs) play a crucial role in dietary fat digestion and in the regulation of lipid, glucose, and energy metabolism. Thyroid-stimulating hormone (TSH) is a hormone produced by the anterior pituitary gland that directly regulates several metabolic pathways. However, the impact of TSH on BA homeostasis remains largely unknown. Methods We analyzed serum BA and TSH levels in healthy volunteers under strict control of caloric intake. Thyroidectomized rats were administered thyroxine and injected with different doses of TSH. Tshr−/− mice were supplemented with thyroxine, and C57BL/6 mice were injected with Tshr-siRNA via the tail vein. The serum BA levels, BA pool size, and fecal BA excretion rate were measured. The regulation of SREBP-2, HNF-4α, and CYP7A1 by TSH were analyzed using luciferase reporter, RNAi, EMSA, and CHIP assays. Results A negative correlation was observed between the serum levels of TSH and the serum BA levels in healthy volunteers. TSH administration led to a decrease in BA content and CYP7A1 activity in thyroidectomized rats supplemented with thyroxine. When Tshr was silenced in mice, the BA pool size, fecal BA excretion rate, and serum BA levels all increased. Additionally, we found that HNF-4α acts as a critical molecule through which TSH represses CYP7A1 activity. We further confirmed that the accumulation of mature SREBP-2 protein could impair the capacity of nuclear HNF-4α to bind to the CYP7A1 promoter, a mechanism that appears to mediate the effects of TSH. Conclusions TSH represses hepatic BA synthesis via a SREBP-2/HNF-4α/CYP7A1 signaling pathway. This finding strongly supports the notion that TSH is an important pathophysiological regulator of liver BA homeostasis independently of thyroid hormones. Bile acids (BAs) play a crucial role in dietary fat digestion and in the regulation of lipid, glucose, and energy metabolism. Thyroid-stimulating hormone (TSH) is a hormone produced by the anterior pituitary gland that directly regulates several metabolic pathways. However, the impact of TSH on BA homeostasis remains largely unknown. We analyzed serum BA and TSH levels in healthy volunteers under strict control of caloric intake. Thyroidectomized rats were administered thyroxine and injected with different doses of TSH. Tshr−/− mice were supplemented with thyroxine, and C57BL/6 mice were injected with Tshr-siRNA via the tail vein. The serum BA levels, BA pool size, and fecal BA excretion rate were measured. The regulation of SREBP-2, HNF-4α, and CYP7A1 by TSH were analyzed using luciferase reporter, RNAi, EMSA, and CHIP assays. A negative correlation was observed between the serum levels of TSH and the serum BA levels in healthy volunteers. TSH administration led to a decrease in BA content and CYP7A1 activity in thyroidectomized rats supplemented with thyroxine. When Tshr was silenced in mice, the BA pool size, fecal BA excretion rate, and serum BA levels all increased. Additionally, we found that HNF-4α acts as a critical molecule through which TSH represses CYP7A1 activity. We further confirmed that the accumulation of mature SREBP-2 protein could impair the capacity of nuclear HNF-4α to bind to the CYP7A1 promoter, a mechanism that appears to mediate the effects of TSH. TSH represses hepatic BA synthesis via a SREBP-2/HNF-4α/CYP7A1 signaling pathway. This finding strongly supports the notion that TSH is an important pathophysiological regulator of liver BA homeostasis independently of thyroid hormones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
dylanqy发布了新的文献求助30
29秒前
44秒前
优雅山柏发布了新的文献求助10
48秒前
53秒前
zoe完成签到 ,获得积分10
1分钟前
王_123123123123w完成签到 ,获得积分10
1分钟前
dylanqy完成签到,获得积分10
1分钟前
huangzsdy完成签到,获得积分10
1分钟前
ChiHiRo9Q完成签到,获得积分10
1分钟前
baroque完成签到 ,获得积分10
2分钟前
研友_VZG7GZ应助苔藓采纳,获得10
2分钟前
3分钟前
苔藓发布了新的文献求助10
3分钟前
科研通AI5应助ma采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
ma发布了新的文献求助10
3分钟前
123完成签到 ,获得积分10
4分钟前
慕青应助百里采纳,获得10
4分钟前
冷傲半邪完成签到,获得积分10
4分钟前
4分钟前
4分钟前
葛力发布了新的文献求助10
4分钟前
百里发布了新的文献求助10
4分钟前
方白秋完成签到,获得积分10
4分钟前
科研通AI2S应助葛力采纳,获得10
4分钟前
naczx完成签到,获得积分0
4分钟前
5分钟前
vitamin完成签到 ,获得积分10
5分钟前
紫熊完成签到,获得积分10
5分钟前
直率的笑翠完成签到 ,获得积分10
5分钟前
吕半鬼完成签到,获得积分0
5分钟前
一见憘完成签到 ,获得积分10
5分钟前
知行者完成签到 ,获得积分10
6分钟前
33完成签到 ,获得积分10
7分钟前
迪迦奥特曼完成签到,获得积分10
7分钟前
7分钟前
长情的兰发布了新的文献求助10
7分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840848
求助须知:如何正确求助?哪些是违规求助? 3382744
关于积分的说明 10526431
捐赠科研通 3102602
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773603