The authors reply:

无线电技术 人工智能 支持向量机 医学 特征选择 核医学 机器学习 计算机科学
作者
Junjiong Zheng,Hao Yu,Zhuo Wu,Xiaoguang Zou,Tianxin Lin
出处
期刊:Kidney International [Elsevier BV]
卷期号:100 (5): 1142-1143
标识
DOI:10.1016/j.kint.2021.08.009
摘要

We thank Zhang et al.1 Zhang L. Zhang B. A machine learning–based radiomic model for predicting urinary infection stone. Kidney Int. 2021; 100: 1142 Abstract Full Text Full Text PDF Scopus (2) Google Scholar for their interest in our study. 2 Zheng J. Yu H. Batur J. et al. A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learning. Kidney Int. 2021; 100: 870-880 Abstract Full Text Full Text PDF Scopus (16) Google Scholar Usually, feature reproducibility assessment is implemented for data dimension reduction. However, because the margins of a urinary stone in computed tomography images are clear, satisfactory interobserver feature extraction reproducibility was achieved in our study, with interclass correlation coefficients ranging from 0.848 to 1.000. Therefore, all extracted radiomics features were used for the subsequent modeling. Moreover, the 24 selected features had only a low pairwise correlation (mean absolute Spearman, ρ = 0.196), indicating that these features provide complementary information. 3 Grossmann P. Narayan V. Chang K. et al. Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol. 2017; 19: 1688-1697 Crossref PubMed Scopus (78) Google Scholar We compared the performances of 4 feature selection methods and chose the optimal model in our study. This approach was also used in other radiomics studies. 4 Xu L. Yang P. Liang W. et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma. Theranostics. 2019; 9: 5374-5385 Crossref PubMed Scopus (93) Google Scholar ,5 Saadani H. van der Hiel B. Aalbersberg E.A. et al. Metabolic biomarker-based BRAFV600 mutation association and prediction in melanoma. J Nucl Med. 2019; 60: 1545-1552 Crossref PubMed Scopus (19) Google Scholar The favorable performance of our radiomics model in the validation sets also indicated the reliability of this method. The method recommended by Zhang et al. is also reasonable, which needs further investigation. A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learningKidney InternationalVol. 100Issue 4PreviewUrolithiasis is a common urological disease, and treatment strategy options vary between different stone types. However, accurate detection of stone composition can only be performed in vitro. The management of infection stones is particularly challenging with yet no effective approach to pre-operatively identify infection stones from non-infection stones. Therefore, we aimed to develop a radiomic model for preoperatively identifying infection stones with multicenter validation. In total, 1198 eligible patients with urolithiasis from three centers were divided into a training set, an internal validation set, and two external validation sets. Full-Text PDF A machine learning–based radiomic model for predicting urinary infection stoneKidney InternationalVol. 100Issue 5PreviewWe read with great interest the article by Zheng et al.,1 published in Kidney International. This study leveraged a noninvasive radiomic model to preoperatively predict infection stones. Despite the encouraging results, several methodological issues should be noted. A robust radiomic biomarker across various image acquisitions and feature selection methods is crucial for the reliability of subsequent modeling. The authors should include the radiomic features that did not show significant differences due to machine and acquisition parameters. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
谢123完成签到 ,获得积分10
2秒前
XIHaun完成签到,获得积分10
2秒前
科研通AI5应助Ysheng采纳,获得10
2秒前
1292360125发布了新的文献求助10
3秒前
4秒前
麦可发布了新的文献求助10
4秒前
昵称发布了新的文献求助10
4秒前
rose完成签到,获得积分10
5秒前
科研通AI5应助郭子采纳,获得10
5秒前
方寸发布了新的文献求助10
5秒前
6秒前
yuyuyu发布了新的文献求助10
7秒前
kingwill发布了新的文献求助30
7秒前
sean118发布了新的文献求助10
7秒前
7秒前
莽咂发布了新的文献求助10
8秒前
8秒前
Joseph完成签到,获得积分10
8秒前
yang1完成签到,获得积分10
9秒前
酷波er应助学术废物采纳,获得10
9秒前
拼搏荠发布了新的文献求助20
10秒前
聪明的冬瓜完成签到,获得积分10
11秒前
五一发布了新的文献求助10
12秒前
12秒前
传奇3应助lit_sheep采纳,获得10
12秒前
Owen应助yanghaohao采纳,获得10
13秒前
小美发布了新的文献求助10
14秒前
xiyou完成签到,获得积分10
14秒前
陈楠完成签到,获得积分10
14秒前
科研通AI5应助YoungLee采纳,获得10
14秒前
15秒前
SYLH应助阿里院士采纳,获得10
16秒前
科研通AI5应助yuyuyu采纳,获得10
18秒前
慕青应助开朗曲奇采纳,获得10
19秒前
猪小猪完成签到,获得积分10
19秒前
1234567完成签到,获得积分10
19秒前
XIHaun发布了新的文献求助10
19秒前
酷波er应助舒心青旋采纳,获得10
20秒前
1292360125完成签到,获得积分10
20秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821001
求助须知:如何正确求助?哪些是违规求助? 3363912
关于积分的说明 10425953
捐赠科研通 3082336
什么是DOI,文献DOI怎么找? 1695505
邀请新用户注册赠送积分活动 815168
科研通“疑难数据库(出版商)”最低求助积分说明 769002