Comparison of Random Forest and Neural Network in Modeling the Performance and Emissions of a Natural Gas Spark Ignition Engine

SPARK(编程语言) 燃烧 点火系统 人工神经网络 火花点火发动机 随机森林 计算机科学 内燃机 柴油机 汽车工程 机器学习 工程类 化学 航空航天工程 有机化学 程序设计语言
作者
Jinlong Liu,Qiao Huang,Christopher Ulishney,Cosmin E. Dumitrescu
出处
期刊:Journal of Energy Resources Technology-transactions of The Asme [ASM International]
卷期号:144 (3) 被引量:81
标识
DOI:10.1115/1.4053301
摘要

Abstract Machine learning (ML) models can accelerate the development of efficient internal combustion engines. This study assessed the feasibility of data-driven methods toward predicting the performance of a diesel engine modified to natural gas (NG) spark ignition (SI), based on a limited number of experiments. As the best ML technique cannot be chosen a priori, the applicability of different ML algorithms for such an engine application was evaluated. Specifically, the performance of two widely used ML algorithms, the random forest (RF) and the artificial neural network (ANN), in forecasting engine responses related to in-cylinder combustion phenomena was compared. The results indicated that both algorithms with spark timing (ST), mixture equivalence ratio, and engine speed as model inputs produced acceptable results with respect to predicting engine performance, combustion phasing, and engine-out emissions. Despite requiring more effort in hyperparameter optimization, the ANN model performed better than the RF model, especially for engine emissions, as evidenced by the larger R-squared, smaller root-mean-square errors (RMSEs), and more realistic predictions of the effects of key engine control variables on the engine performance. However, in applications where the combustion behavior knowledge is limited, it is recommended to use a RF model to quickly determine the appropriate number of model inputs. Consequently, using the RF model to define the model structure and then using the ANN model to improve the model’s predictive capability can help to rapidly build data-driven engine combustion models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助ww采纳,获得10
刚刚
CYY完成签到,获得积分20
2秒前
bias完成签到,获得积分10
4秒前
5秒前
灿烂sunfly发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
Hello应助lllym采纳,获得10
7秒前
称心冰菱完成签到,获得积分10
7秒前
简简完成签到,获得积分10
7秒前
卖艺的读书人完成签到 ,获得积分10
7秒前
不会取名字完成签到,获得积分10
8秒前
SJ发布了新的文献求助10
8秒前
科研通AI2S应助厚朴采纳,获得10
8秒前
柠檬完成签到 ,获得积分10
8秒前
jenningseastera应助whoknowsname采纳,获得10
10秒前
10秒前
王武聪发布了新的文献求助10
10秒前
鲸鱼发布了新的文献求助10
10秒前
奶昔源完成签到,获得积分10
11秒前
hanna完成签到 ,获得积分10
11秒前
Hudan发布了新的文献求助20
11秒前
鱼香丸子完成签到,获得积分10
12秒前
沙子发布了新的文献求助10
12秒前
核桃发布了新的文献求助10
14秒前
刘强发布了新的文献求助10
14秒前
superlit完成签到,获得积分10
15秒前
puppet发布了新的文献求助20
17秒前
个性跳跳糖完成签到,获得积分10
17秒前
畅快的饼干完成签到 ,获得积分10
18秒前
灿烂sunfly完成签到,获得积分10
18秒前
DMA50完成签到 ,获得积分10
18秒前
雀冬完成签到,获得积分10
19秒前
惟愿星恒发布了新的文献求助10
20秒前
20秒前
21秒前
zhuoxin完成签到,获得积分10
21秒前
zgl发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537931
求助须知:如何正确求助?哪些是违规求助? 3972654
关于积分的说明 12306475
捐赠科研通 3639434
什么是DOI,文献DOI怎么找? 2003881
邀请新用户注册赠送积分活动 1039207
科研通“疑难数据库(出版商)”最低求助积分说明 928594