Comprehensive assessment of deep generative architectures for de novo drug design

计算机科学 生成语法 人工智能 利用 机器学习 生成模型 生成设计 药物发现 深度学习 生物信息学 工程类 生物 运营管理 计算机安全 公制(单位)
作者
Mingyang Wang,Huiyong Sun,Jike Wang,Jinping Pang,Xin Chai,Lei Xu,Honglin Li,Dong-Sheng Cao,Tingjun Hou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:7
标识
DOI:10.1093/bib/bbab544
摘要

Recently, deep learning (DL)-based de novo drug design represents a new trend in pharmaceutical research, and numerous DL-based methods have been developed for the generation of novel compounds with desired properties. However, a comprehensive understanding of the advantages and disadvantages of these methods is still lacking. In this study, the performances of different generative models were evaluated by analyzing the properties of the generated molecules in different scenarios, such as goal-directed (rediscovery, optimization and scaffold hopping of active compounds) and target-specific (generation of novel compounds for a given target) tasks. In overall, the DL-based models have significant advantages over the baseline models built by the traditional methods in learning the physicochemical property distributions of the training sets and may be more suitable for target-specific tasks. However, both the baselines and DL-based generative models cannot fully exploit the scaffolds of the training sets, and the molecules generated by the DL-based methods even have lower scaffold diversity than those generated by the traditional models. Moreover, our assessment illustrates that the DL-based methods do not exhibit obvious advantages over the genetic algorithm-based baselines in goal-directed tasks. We believe that our study provides valuable guidance for the effective use of generative models in de novo drug design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
mytdxj完成签到,获得积分10
1秒前
小广发布了新的文献求助10
1秒前
李健的小迷弟应助十二采纳,获得10
1秒前
以我之铭发布了新的文献求助10
1秒前
rlh发布了新的文献求助10
2秒前
2秒前
2秒前
wxyshare应助seven采纳,获得10
3秒前
Either发布了新的文献求助10
3秒前
3秒前
3秒前
下文献应助灿灿呀采纳,获得10
3秒前
keke发布了新的文献求助30
3秒前
大方忆南完成签到,获得积分20
3秒前
meng完成签到,获得积分10
3秒前
4秒前
两7完成签到 ,获得积分10
4秒前
4秒前
4秒前
白天完成签到,获得积分20
4秒前
CLN发布了新的文献求助10
4秒前
Liekkas发布了新的文献求助10
5秒前
JYT完成签到,获得积分10
5秒前
5秒前
桐桐应助橙子abcy采纳,获得10
5秒前
hgfj完成签到,获得积分10
6秒前
7秒前
czcz完成签到,获得积分10
7秒前
爆米花应助wjw采纳,获得10
7秒前
7秒前
7秒前
Derik发布了新的文献求助10
7秒前
7秒前
彭彭发布了新的文献求助10
7秒前
7秒前
BINGBING1230发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261106
求助须知:如何正确求助?哪些是违规求助? 4422247
关于积分的说明 13765679
捐赠科研通 4296652
什么是DOI,文献DOI怎么找? 2357478
邀请新用户注册赠送积分活动 1353844
关于科研通互助平台的介绍 1315035