Bayesian Analysis with R for Drug Development

药品 贝叶斯概率 药物开发 计算机科学 心理学 人工智能 医学 药理学
作者
Harry Yang,Steven Novick
出处
期刊:Chapman and Hall/CRC eBooks [Informa]
被引量:8
标识
DOI:10.1201/9781315100388
摘要

Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development. Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems. Features Provides a single source of information on Bayesian statistics for drug development Covers a wide spectrum of pre-clinical, clinical, and CMC topics Demonstrates proper Bayesian applications using real-life examples Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University. Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
lzd完成签到,获得积分10
2秒前
科目三应助路痴采纳,获得10
3秒前
yll完成签到,获得积分10
4秒前
4秒前
李爱笑发布了新的文献求助10
4秒前
彭于晏应助青栞采纳,获得30
5秒前
彪壮的颦完成签到,获得积分20
5秒前
慕燕琼发布了新的文献求助10
6秒前
旧旧完成签到 ,获得积分10
8秒前
动漫大师发布了新的文献求助10
8秒前
9秒前
共享精神应助小谢同学采纳,获得10
11秒前
yangxinyu发布了新的文献求助10
13秒前
孙豪泽完成签到,获得积分10
13秒前
wao完成签到 ,获得积分10
15秒前
路痴完成签到,获得积分20
15秒前
YOUNG完成签到,获得积分10
15秒前
123321完成签到 ,获得积分10
18秒前
1234发布了新的文献求助10
18秒前
领导范儿应助妮儿采纳,获得10
18秒前
zk完成签到,获得积分20
19秒前
汉堡包应助MW采纳,获得10
20秒前
不会失忆完成签到,获得积分10
21秒前
21秒前
Orange应助zhk采纳,获得10
21秒前
上官若男应助Mr兔仙森采纳,获得10
24秒前
Orange应助小郑采纳,获得30
25秒前
空白发布了新的文献求助30
25秒前
NexusExplorer应助都市隶人采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
26秒前
笨笨芯应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
yxy完成签到,获得积分10
28秒前
小二郎应助1234采纳,获得10
28秒前
李爱笑完成签到,获得积分10
29秒前
刘珍荣完成签到 ,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783129
求助须知:如何正确求助?哪些是违规求助? 3328480
关于积分的说明 10236624
捐赠科研通 3043565
什么是DOI,文献DOI怎么找? 1670577
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119