Assessing Energy Efficiency Measures for Hydraulic Systems using a Digital Twin

高效能源利用 模块化设计 Python(编程语言) 可靠性工程 计算机科学 工程类 模拟 操作系统 电气工程
作者
Borys Ioshchikhes,Fabian Borst,Matthias Weigold
出处
期刊:Procedia CIRP [Elsevier]
卷期号:107: 1232-1237 被引量:2
标识
DOI:10.1016/j.procir.2022.05.137
摘要

As manufacturing companies around the world face the challenge of reducing CO2 emissions and achieving their climate goals, increasing energy efficiency provides a promising solution while potentially reducing costs. Hydraulic systems are used in a wide range of applications such as heating, ventilation, air conditioning or machine tools and account for approximately 11 % of the electric energy demand in the German industry in 2017. Furthermore, up to 25 million tons of CO2 are emitted annually in Germany as a result of their operation. Against this background, the following paper aims to increase the energy efficiency of hydraulic systems through automated assessment of energy efficiency measures during system operation. Therefore, we present a modular approach for real-time assessing of energy efficiency measures using a digital twin, which contains an expert system combined with real-time simulation models. To detect inefficiencies without time consuming analysis and substantial user expertise, the expert system automatically identifies system leakage and increased flow resistance using a multi-output regression model. Finally, the expert system aims at engaging operators to implement energy efficiency measures by quantifying their respective energy saving potentials. The proposed measures are applied to the virtual representation of a hydraulic system in real-time. Therefore, a Modelica simulation model is developed, which is exported as a functional mock-up unit (FMU) and integrated into a Python framework. If measures lead to an improvement in energy efficiency, these are recommended to the operator. The overall concept is validated using a physical hydraulic system within the ETA Research Factory. The validation of the prototype shows that the developed approach can be applied to industrial applications and help in reducing their energy consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助yhnsag采纳,获得10
1秒前
DoctorGY发布了新的文献求助10
1秒前
胡霖完成签到,获得积分10
1秒前
萨特完成签到,获得积分10
3秒前
冷静机器猫完成签到,获得积分10
5秒前
wintersss完成签到,获得积分10
5秒前
6秒前
李健应助忧郁的太英采纳,获得10
7秒前
9秒前
文献看不懂应助Violet采纳,获得10
10秒前
小二郎应助三木采纳,获得10
10秒前
11秒前
研友_Zb1rln发布了新的文献求助30
11秒前
Atlantis发布了新的文献求助10
13秒前
单于安发布了新的文献求助10
15秒前
16秒前
16秒前
悦耳的怀绿完成签到,获得积分10
18秒前
19秒前
wzhang完成签到,获得积分10
20秒前
皮皮蛙完成签到,获得积分10
20秒前
赘婿应助NEO采纳,获得30
21秒前
21秒前
三木发布了新的文献求助10
23秒前
落后醉易发布了新的文献求助10
23秒前
ldh032应助奥斯卡采纳,获得10
27秒前
小太阳完成签到,获得积分10
28秒前
1874发布了新的文献求助30
28秒前
jenningseastera应助草木采纳,获得10
31秒前
CodeCraft应助猪猪hero采纳,获得10
33秒前
34秒前
归尘应助高兴荔枝采纳,获得10
36秒前
赘婿应助高兴荔枝采纳,获得10
36秒前
科研通AI5应助谢佳冀采纳,获得10
36秒前
36秒前
where发布了新的文献求助10
39秒前
小邹完成签到,获得积分10
39秒前
陆晓亦完成签到,获得积分10
40秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778099
求助须知:如何正确求助?哪些是违规求助? 3323764
关于积分的说明 10215701
捐赠科研通 3038943
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798368
科研通“疑难数据库(出版商)”最低求助积分说明 758339