KUB-UNet: Segmentation of Organs of Urinary System from a KUB X-ray Image

分割 计算机科学 稳健性(进化) 人工智能 可靠性(半导体) 医学影像学 感兴趣区域 图像分割 计算机视觉 生物化学 量子力学 基因 物理 功率(物理) 化学
作者
Geeta Rani,Priyam Thakkar,Akshat Verma,Vanshika V. Mehta,Rugved Chavan,Vijaypal Singh Dhaka,R. K. Sharma,Eugenio Vocaturo,Ester Zumpano
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:224: 107031-107031 被引量:28
标识
DOI:10.1016/j.cmpb.2022.107031
摘要

The alarming increase in diseases of urinary system is a cause of concern for the populace and health experts. The traditional techniques used for the diagnosis of these diseases are inconvenient for patients, require high cost, and additional waiting time for generating the reports. The objective of this research is to utilize the proven potential of Artificial Intelligence for organ segmentation. Correct identification and segmentation of the region of interest in a medical image are important to enhance the accuracy of disease diagnosis. Also, it improves the reliability of the system by ensuring the extraction of features only from the region of interest.A lot of research works are proposed in the literature for the segmentation of organs using MRI, CT scans, and ultrasound images. But, the segmentation of kidneys, ureters, and bladder from KUB X-ray images is found under explored. Also, there is a lack of validated datasets comprising KUB X-ray images. These challenges motivated the authors to tie up with the team of radiologists and gather the anonymous and validated dataset that can be used to automate the diagnosis of diseases of the urinary system. Further, they proposed a KUB-UNet model for semantic segmentation of the urinary system.The proposed KUB-UNet model reported the highest accuracy of 99.18% for segmentation of organs of urinary system.The comparative analysis of its performance with state-of-the-art models and validation of results by radiology experts prove its reliability, robustness, and supremacy. This segmentation phase may prove useful in extracting the features only from the region of interest and improve the accuracy diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助爱橙色的阿七采纳,获得10
1秒前
苗条柜子完成签到,获得积分20
1秒前
找文献完成签到,获得积分10
1秒前
子车茗应助专注向松采纳,获得50
2秒前
4秒前
高兴的丝完成签到 ,获得积分10
5秒前
qqcc001完成签到,获得积分10
5秒前
5秒前
牡松发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
李健的小迷弟应助hanshiyi采纳,获得10
7秒前
7秒前
7秒前
糟糕的黎云完成签到,获得积分10
8秒前
momo完成签到 ,获得积分10
9秒前
FashionBoy应助爱听歌采纳,获得10
10秒前
今后应助Cici采纳,获得10
10秒前
10秒前
12秒前
13秒前
12345发布了新的文献求助10
13秒前
李博士发布了新的文献求助10
13秒前
15秒前
16秒前
爱橙色的阿七完成签到,获得积分20
16秒前
星河鹭起完成签到,获得积分10
16秒前
qqcc001发布了新的文献求助10
18秒前
18秒前
lalla发布了新的文献求助10
18秒前
所所应助李,,,,采纳,获得10
19秒前
12345完成签到,获得积分10
20秒前
mint-WANG发布了新的文献求助10
20秒前
sywkamw发布了新的文献求助30
20秒前
李博士完成签到,获得积分10
21秒前
酷波er应助上官以山采纳,获得10
21秒前
corrine1426发布了新的文献求助10
22秒前
小马甲应助肖潇雨歇采纳,获得10
22秒前
sleepingfish应助kenyant采纳,获得20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5190952
求助须知:如何正确求助?哪些是违规求助? 4374481
关于积分的说明 13621308
捐赠科研通 4228383
什么是DOI,文献DOI怎么找? 2319255
邀请新用户注册赠送积分活动 1317796
关于科研通互助平台的介绍 1267826