Multi-point short-term prediction of station passenger flow based on temporal multi-graph convolutional network

期限(时间) 计算机科学 图形 理论计算机科学 物理 量子力学
作者
Yaguan Wang,Yong Qin,Jianyuan Guo,Zhiwei Cao,Limin Jia
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:604: 127959-127959 被引量:16
标识
DOI:10.1016/j.physa.2022.127959
摘要

Prediction of passenger flow distribution in urban rail transit stations can provide important data support for passenger flow organization and passenger travel guidance. However, complex station space structure and simulation-based passenger flow data bring challenges to accurate analysis and prediction of the passenger flow inside the station. This paper proposes a temporal graph attention convolutional neural network model (TGACN) to predict the passenger flow volume and density in key areas of the station. Firstly, considering the topological structure of key areas and the characteristics of passenger flow and flow trend in the station, a multi-graph generation method for continuous space in stations is designed, including geographic neighborhood graph and semantic neighborhood graph, to represent the static and dynamic correlation between nodes. Secondly, a new method of spatio-temporal feature fusion is proposed, which takes multi-graph as input to optimize the extraction and expression of spatial and temporal correlation. Finally, the TGACN is verified by passenger flow data set, which is constructed based on real-time video monitoring data of a transit station in Guangzhou. Experiments demonstrate that the TGACN can obtain the spatio-temporal correlation from passenger flow data, and the prediction results are better than the existing baseline models. • A prediction model for multipoint passenger flow in station is proposed. • Geographical graph is constructed to measure the spatial correlation between nodes. • Semantic graph is constructed to measure the correlation of passenger flow state. • Effective spatial information screening is realized by dimensionality reduction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
若雨凌风应助科研通管家采纳,获得20
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
DDDD应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
ShawnLyu应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
ShawnLyu应助科研通管家采纳,获得10
2秒前
yohana完成签到 ,获得积分10
2秒前
2秒前
3秒前
清爽冰露发布了新的文献求助50
3秒前
5秒前
连冬萱完成签到 ,获得积分10
7秒前
亚男君完成签到,获得积分10
7秒前
Carlito发布了新的文献求助30
7秒前
李李完成签到 ,获得积分10
7秒前
Xin发布了新的文献求助20
8秒前
哼哼发布了新的文献求助20
9秒前
上善若水发布了新的文献求助10
10秒前
10秒前
赛赛完成签到,获得积分10
10秒前
大模型应助旺旺大李包采纳,获得10
12秒前
大个应助人不犯二枉少年采纳,获得10
12秒前
动漫大师发布了新的文献求助10
12秒前
13秒前
Zoe先生完成签到,获得积分10
14秒前
16秒前
赛赛发布了新的文献求助10
16秒前
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806767
求助须知:如何正确求助?哪些是违规求助? 3351517
关于积分的说明 10354367
捐赠科研通 3067322
什么是DOI,文献DOI怎么找? 1684457
邀请新用户注册赠送积分活动 809699
科研通“疑难数据库(出版商)”最低求助积分说明 765606