亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Zooxanthellae

生物 虫黄藻 计算生物学 进化生物学 遗传学 共生 细菌
作者
Todd C. LaJeunesse
出处
期刊:Current Biology [Elsevier]
卷期号:30 (19): R1110-R1113 被引量:14
标识
DOI:10.1016/j.cub.2020.03.058
摘要

What are zooxanthellae? Until recently, all unicellular microalgae of yellow or brownish color found in animals or protists were customarily referred to as ‘zooxanthellae’, an antiquated term coined in the late 1800s. Animals that depend on photo-symbionts for their well-being were said to be zooxanthellate. In recent decades, advances in light and electron microscopy, combined with emerging molecular–genetic evidence, led to the realization that these photosynthetic symbionts represented many unrelated phyla of microeukaryotes. However, the large majority of ‘zooxanthellae’ are mutualistic dinoflagellates in the order Dinophyceae found in many shallow-water invertebrates (notably reef-forming corals), and in a few kinds of unicellular forams and ciliates. Dinoflagellates are a large and diverse group noted for their importance in plankton communities, as agents of harmful algal blooms (e.g., red tides) and in creating bioluminescence in the ocean. They share a recent common ancestor with the largely endoparasitic phylum Apicomplexa, some of which cause diseases such as malaria and toxoplasmosis. In the second half of the 20th Century most dinoflagellate zooxanthellae were formally classified in the genus Symbiodinium; and originally thought to comprise one widespread species, Symbiodinium microadriaticum. However, the substantial genetic divergence between phylogenetic clades and large differences in their genomic compositions led to recent reorganization into multiple genera (currently nine) within the family Symbiodiniaceae, while other dinoflagellate orders and families contain symbiotic species, the family Symbiodiniaceae (order Suessiales) is by far the most geographically widespread and ecologically important. Why are symbiodiniacean zooxanthellae important? Reef-building corals are ultimately reliant on the sun’s radiance for their survival and growth. These stony corals, as well as many other non-reef forming species, depend on nutrients from the photosynthetic activities of their resident dinoflagellates. These small symbionts (ranging from 5–13 μm) occur in host tissues at densities numbering millions of cells per square centimeter. In most cases, about 20 to 50 of organic compounds (glucose, amino acids, etc.) produced by these algae are delivered to their hosts as fuel for metabolically expensive processes such as tissue growth, and for reef corals in particular, constructing calcium carbonate skeletons. It is estimated that these nutrients fulfill much of the daily metabolic needs for most hosts. Further, these animals also acquire food by actively feeding on prey and particulates, and the byproducts of digestion and respiration (i.e., inorganic compounds) are absorbed rapidly by the symbionts for their own cellular maintenance and growth. Ultimately, this intimate mutualism is the basis for the existence of all shallow-water coral reefs on Earth — and explains why these systems are so productive in nutrient-poor waters. How ecologically diverse and geographically widespread are Symbiodiniaceae? Numerous invertebrate phyla, including the Cnidaria (e.g., reef corals, sea anemones, sea fans, jellyfish), Mollusca (e.g. giant clams), Porifera (sponges), and Platyhelminthes (flat worms), as well as some ciliates and foraminifera (soritids), harbor symbiodiniacean species. These hosts occur in shallow marine habitats ranging from tropical to temperate latitudes. There are likely hundreds of undescribed species in the family Symbiodiniaceae, each with distinct ecological attributes and geographic distributions, including species that are host-specific and regionally endemic to those that associate with many kinds of hosts across vast areas of ocean like the Indo-Pacific. The genus Cladocopium alone probably comprises hundreds of species. The host-as-habitat lifestyle appears to exert strong selection pressure generating many host-specialized symbionts, especially during adaptive radiations lasting many thousands or millions of years (see below). While it is true that not all symbiotic dinoflagellates are Symbiodiniaceae, it is also true that not all Symbiodiniaceae are symbiotic. Certain species from several different genera are exclusively free-living and therefore non-symbiotic. Over the evolutionary history of this family, there are lineages (both species and genera) that have apparently lost the capacity to form mutualistic endosymbioses, but it remains unclear as to the nature of their ecology and how they may contribute to marine microbial food webs. How long have their mutualisms existed? The evolutionary history of mutualisms involving Symbiodiniaceae extends back to the very origins of dinoflagellates and the corals responsible for building reefs today. Extant dinoflagellate orders originated during a major adaptive radiation over 200 million years ago, coinciding with a time when modern reef-building corals began to diversify and occupy warm coastal habitats in great abundance. Molecular clock estimates place the origins of the most ancestral lineage of Symbiodiniaceae in the early to mid-Jurassic period, when corals reached their peak rates of diversification following a long recovery from the end-Triassic mass extinction. Therefore, the origin of modern coral reef ecosystems began in the Mesozoic era facilitated by the emergence of animal–dinoflagellate mutualisms. By proxy, non-fossilizing Cnidaria and other invertebrate lineages must have evolved their symbioses at some point over this large span of time. The broader implication is that these partnerships have endured an immense span of geological time and large changes in the Earth’s climate. Who controls the mutualism? It is unclear how much the host influences control over its symbionts, and vice versa. Ultimately, both partners likely share in regulating the mutualism. We still know very little about the underlying cellular/biochemical exchanges and communication between animal and algal cells. These partnerships are particularly complicated because, unlike the multitude of symbioses between animals and bacteria, the constituents of this mutualism are both eukaryotic (most other endosymbiotic eukaryotes are parasites or pathogens; e.g., Apicomplexa). There is little indication that the host necessarily has direct control over the identity of the residing symbiont. Host ‘flexibility’ in nature is limited to a small number of compatible symbiont species whose abundance in host individuals is governed by prevailing external environmental conditions. Indeed, some partner pairings can be manipulated artificially by moving colonies to new habitats, or subjecting them to prolonged thermal stress. Given the intracellular nature of the relationship, the host cell’s plasma membrane and cytoplasm, as well as the surrounding host-derived symbiosome membrane, constitute a barrier limiting the symbiont cell’s access to the outside world (Figure 1). In this physical sense, the host exerts ‘control’ over the symbiont. Nutrient availability can ‘regulate’ the symbiont’s population densities, but evidence of the host’s ability to actively modulate symbiont nutrition remains equivocal. However, the symbiont likely has its own means of influencing the host. The symbiont cell has twice as many genes as the host cell, and its genome is an order of magnitude larger. Moreover, dinoflagellates generate a variety of secondary metabolites. How the expression of large numbers of genes and the release of biologically active compounds interact with, for example, the host cell’s innate immune system is largely unknown. The origins of this mutualism likely evolved out of what was initially a parasitism. Therefore, present-day symbionts likely possess mechanisms for evading cellular digestion and host immune responses. With a few exceptions, individual reef corals harbor a single dominant symbiodiniacean species. Moreover this ‘resident symbiont population’ is often mono-clonal, originating from a single symbiont cell proliferating through mitotic division to dominate the entire host colony as the animal itself buds polyps and grows larger. In colonies where more than one symbiont is co-abundant, the other dominant symbiont is almost always a member of a different genus. Nevertheless, barring episodes of severe stress, the more common one–host–clone: one–symbiont–clone relationship remains stable for years and possibly over the life of the animal. Which symbionts are important to reef corals imperiled by climate warming? Sea-surface heat waves create worrying episodes of widespread coral beaching (i.e., colony whitening from losing their pigmented symbionts) and mass mortality across many reefs (Figure 1). High (and sometimes low) temperatures destabilize these symbioses, and the loss in symbiont physiological integrity is often to blame when these partnerships fall apart. Corals with stress-adapted symbionts are more tolerant of warming episodes and less likely to ‘bleach’ and die. Therefore, when forecasting the responses of reef corals to global warming, the ecological attributes and physiological capabilities of each symbiont species must be considered. Studying coral communities that persist in extreme habitats, such as warm inshore environments (e.g., the rock islands of Palau) and shallow seas (e.g., the Persian–Arabian Gulf), provides insight into the possible make-up and viability of coral–algal mutualisms in a warmer future. For example, we know that small numbers of host-generalist and host-specialized symbiont species that are tolerant of environmental stressors typically dominate coral populations found in these extreme environments. We have also learned that the low symbiont diversity observed in these habitats reflects phylogenetic patterns, which suggest that major climate shifts over geological time drove bottlenecks in symbiont diversity (more so than for hosts) and favored the geographic spread and ecological success of only a few symbionts that were better adapted to the new prevailing environment. Over time, these symbionts diversified into numerous species as populations became reproductively isolated as a consequence of ecological specialization and geographical separation. Adaptive radiations of this sort appear to have occurred in different ocean basins during the recent Pliocene and Pleistocene epochs. The comparatively fast warming rates of today, however, may limit the extent to which these mutualisms can respond, both ecologically and evolutionarily, as they have done in the past. More research is needed to better predict the outcomes of climate change on these symbionts and their hosts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
基莲发布了新的文献求助10
2秒前
可靠发布了新的文献求助10
17秒前
luffy189完成签到 ,获得积分10
56秒前
59秒前
xuanfeng1998发布了新的文献求助10
1分钟前
貔貅完成签到,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
2分钟前
sun发布了新的文献求助10
3分钟前
充电宝应助sun采纳,获得10
3分钟前
3分钟前
zcx完成签到,获得积分10
4分钟前
5分钟前
彭于晏应助基莲采纳,获得10
5分钟前
5分钟前
基莲发布了新的文献求助10
5分钟前
传奇3应助科研通管家采纳,获得10
5分钟前
5分钟前
bkagyin应助岸上牛采纳,获得10
5分钟前
hua完成签到 ,获得积分10
5分钟前
qiqi1111发布了新的文献求助10
5分钟前
6分钟前
岸上牛发布了新的文献求助10
6分钟前
传奇3应助基莲采纳,获得10
6分钟前
基莲完成签到,获得积分10
6分钟前
6分钟前
基莲发布了新的文献求助10
7分钟前
共享精神应助yubin.cao采纳,获得10
7分钟前
岸上牛完成签到,获得积分10
7分钟前
无私秋双完成签到,获得积分10
8分钟前
可爱的函函应助无私秋双采纳,获得10
8分钟前
xfcy完成签到,获得积分0
8分钟前
9分钟前
9分钟前
konstantino发布了新的文献求助10
9分钟前
10分钟前
无私秋双发布了新的文献求助10
10分钟前
11分钟前
热心易绿完成签到 ,获得积分10
11分钟前
星辰大海应助小葵采纳,获得10
12分钟前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
Glossary of Geology 400
Additive Manufacturing Design and Applications 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2473099
求助须知:如何正确求助?哪些是违规求助? 2138758
关于积分的说明 5450776
捐赠科研通 1862775
什么是DOI,文献DOI怎么找? 926213
版权声明 562805
科研通“疑难数据库(出版商)”最低求助积分说明 495444