Image Deep Steganography Detection based on Knowledge Distillation in Teacher-Student Network

隐写术 计算机科学 人工智能 深度学习 隐写工具 最低有效位 隐写分析技术 图像(数学) 机器学习 数据挖掘 模式识别(心理学) 操作系统
作者
Hao Huifang,Shangping Zhong,Kaizhi Chen
标识
DOI:10.1145/3503961.3503971
摘要

The current hot deep steganography can hide confidential information of an image into a carrier image of the same size. It also has the characteristics of a high steganography rate and is often used for private communication within specific organizations. However, the existing deep steganography detection network is complex and time-consuming. Thus, rapid steganography detection for massive image information is urgently needed. In this study, a typical distillation algorithm is applied to the existing classical deep steganography detection network (Ye-Net and Yedroudj-Net). We constructed a student network, taking Ye-Net and Yedroudj-Net as teacher networks respectively. Appropriate parameters T and α are also selected in accordance with the effect of knowledge distillation. With these parameters, a fast training model of deep steganography detection is established. The proposed deep steganography detection network is compared with Ye-Net and Yedroudj-Net through experiments. Three spatial steganography algorithms (Wow,S-uniward and Hill) and different steganography rates are used. The experimental results show that the proposed network can shorten the training and average detection time by about 70% and 24% when the detection accuracy is slightly lower. Overall, compared with Ye-Net and Yedroudj-Net, the proposed method can achieve fast detection of deep steganography. And code will be available at: https://github.com/hhfshiqi/KD-Ye-net

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小路完成签到,获得积分10
1秒前
张馨元完成签到,获得积分10
1秒前
xh发布了新的文献求助10
1秒前
2秒前
lzylzy发布了新的文献求助10
3秒前
4秒前
4秒前
英俊的铭应助颜亚妮采纳,获得30
5秒前
5秒前
希望天下0贩的0应助Annie采纳,获得30
5秒前
伴妳长路完成签到,获得积分20
6秒前
6秒前
xyma9408发布了新的文献求助10
6秒前
成就的龙猫关注了科研通微信公众号
6秒前
shdheud应助22采纳,获得10
7秒前
7秒前
酷波er应助dd采纳,获得10
8秒前
8秒前
深情安青应助Vegccc采纳,获得10
8秒前
8秒前
研友_LjqB28完成签到,获得积分10
9秒前
Sou发布了新的文献求助10
10秒前
科研通AI2S应助lzylzy采纳,获得10
10秒前
10秒前
galaxy发布了新的文献求助50
11秒前
留胡子的紫槐完成签到,获得积分10
11秒前
zzzhw发布了新的文献求助10
11秒前
LiM完成签到,获得积分10
11秒前
12秒前
善学以致用应助shuyunlou采纳,获得10
12秒前
12秒前
wakkkkk完成签到,获得积分10
12秒前
动听的惋庭完成签到,获得积分10
12秒前
13秒前
14秒前
hongye发布了新的文献求助10
15秒前
成就的曼岚完成签到,获得积分10
15秒前
地塞米松磷酸钠完成签到,获得积分10
15秒前
bkagyin应助JYM采纳,获得10
16秒前
小王完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4383554
求助须知:如何正确求助?哪些是违规求助? 3877211
关于积分的说明 12077586
捐赠科研通 3520519
什么是DOI,文献DOI怎么找? 1932039
邀请新用户注册赠送积分活动 973349
科研通“疑难数据库(出版商)”最低求助积分说明 871609