A novel machine learning-based radiomic model for diagnosing high bleeding risk esophageal varices in cirrhotic patients

医学 食管静脉曲张 接收机工作特性 肝硬化 静脉曲张 胃肠病学 内科学 肝病学 食管 放射科 门脉高压
作者
Yijie Yan,Yue Li,Chunlei Fan,Yuening Zhang,Shibin Zhang,Zhi Wang,Tehui Huang,Zhenjia Ding,Ke–Qin Hu,Lei Li,Huiguo Ding
出处
期刊:Hepatology International [Springer Science+Business Media]
卷期号:16 (2): 423-432 被引量:19
标识
DOI:10.1007/s12072-021-10292-6
摘要

To develop and validate a novel machine learning-based radiomic model (RM) for diagnosing high bleeding risk esophageal varices (HREV) in patients with cirrhosis.A total of 796 qualified participants were enrolled. In training cohort, 218 cirrhotic patients with mild esophageal varices (EV) and 240 with HREV RM were included to training and internal validation groups. Additionally, 159 and 340 cirrhotic patients with mild EV and HREV RM, respectively, were used for external validation. Interesting regions of liver, spleen, and esophagus were labeled on the portal venous-phase enhanced CT images. RM was assessed by area under the receiver operating characteristic curves (AUROC), sensitivity, specificity, calibration and decision curve analysis (DCA).The AUROCs for mild EV RM in training and internal validation were 0.943 and 0.732, sensitivity and specificity were 0.863, 0.773 and 0.763, 0.763, respectively. The AUROC, sensitivity, and specificity were 0.654, 0.773 and 0.632, respectively, in external validation. Interestingly, the AUROCs for HREV RM in training and internal validation were 0.983 and 0.834, sensitivity and specificity were 0.948, 0.916 and 0.977, 0.969, respectively. The related AUROC, sensitivity and specificity were 0.736, 0.690 and 0.762 in external validation. Calibration and DCA indicated RM had good performance. Compared with Baveno VI and its expanded criteria, HREV RM had a higher accuracy and net reclassification improvements that were as high as 49.0% and 32.8%.The present study developed a novel non-invasive RM for diagnosing HREV in cirrhotic patients with high accuracy. However, this RM still needs to be validated by a large multi-center cohort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贺光萌发布了新的文献求助10
1秒前
1秒前
4秒前
韩凡发布了新的文献求助10
4秒前
wuyd90发布了新的文献求助10
5秒前
lzw123456发布了新的文献求助10
5秒前
SciGPT应助认真初之采纳,获得10
8秒前
小林是我完成签到,获得积分20
10秒前
tmr完成签到,获得积分10
13秒前
花开富贵发布了新的文献求助10
13秒前
麦可完成签到,获得积分10
14秒前
典雅的不悔完成签到,获得积分10
17秒前
lc关注了科研通微信公众号
18秒前
21秒前
明亮的代灵完成签到 ,获得积分10
23秒前
细心雨兰发布了新的文献求助50
25秒前
雷雷完成签到,获得积分10
27秒前
30秒前
科研通AI5应助aliu采纳,获得10
31秒前
34秒前
我在城南等你完成签到,获得积分10
34秒前
科研欣路完成签到,获得积分10
35秒前
38秒前
heavennew完成签到,获得积分10
41秒前
ORAzzz发布了新的文献求助20
42秒前
今天看文献了吗完成签到,获得积分10
42秒前
爆米花应助科研通管家采纳,获得10
43秒前
43秒前
搜集达人应助科研通管家采纳,获得10
43秒前
Hello应助科研通管家采纳,获得10
43秒前
完美世界应助科研通管家采纳,获得10
43秒前
深情安青应助科研通管家采纳,获得10
43秒前
汉堡包应助科研通管家采纳,获得10
43秒前
天天快乐应助科研通管家采纳,获得10
43秒前
orixero应助科研通管家采纳,获得10
43秒前
卡卡西应助科研通管家采纳,获得10
43秒前
43秒前
Lucas应助科研通管家采纳,获得10
44秒前
SYLH应助科研通管家采纳,获得10
44秒前
44秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825716
求助须知:如何正确求助?哪些是违规求助? 3367860
关于积分的说明 10448391
捐赠科研通 3087329
什么是DOI,文献DOI怎么找? 1698619
邀请新用户注册赠送积分活动 816861
科研通“疑难数据库(出版商)”最低求助积分说明 769973